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Due to the inherent viscoelasticity of constituent matrix and the possibility of long-term storage, space
deployable structures made of composites are likely to exhibit relaxation in the stored strain energy,
which may degrade their deployment performance. This paper presents a bottom-up finite element based
multiscale computational strategy that bridges the experimentally measurable properties of constituent
fibers and matrix to numerical predictions of viscoelastic behavior of composite laminates and general
shell structures. A user-friendly RVE analysis plug-in tool is developed in Abaqus/CAE to rapidly estimate
the effective orthotropic viscoelastic properties of unidirectional composites by taking as input the
microstructure geometry as well as the known properties of fibers and matrix. Some benchmark prob-
lems were solved, and the accuracy and efficiency of the proposed plug-in tool were verified. Next, the
strategy is shown to be applicable to model the viscoelastic behavior of macroscale composite laminates
and deployable shell structures, by utilizing built-in functions in Abaqus to define the stacking sequence
and accordingly update the material properties. In particular, the proposed multiscale strategy was
employed to simulate the influence of modulus relaxation on the deployment dynamics of a composite
tape-spring hinge, and good agreement was achieved as compared to reported experimental results.
� 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Advanced composite laminates and deployable structures are of
increasing interest for the design of large-scale functional systems
in the aerospace industry as they provide much higher modulus-
to-mass ratio and wider range of shapes that can be fabricated at
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low cost than their metallic counterparts. These composite lami-
nated structures are often thin-walled, designed to be elastically
folded or flattened and then coiled for storage before and during
launch, and capable of deploying spontaneously by releasing the
stored strain energy for use once in orbit [1–4]. Fig. 1 presents
the deployed and folded configurations of two typical composite
deployable structures, i.e., the composite tape-spring hinge (CTSH)
and the composite thin-walled lenticular tube (CTLT).

Due to the specific application scenario in aerospace, before use,
composite deployable structures are often stored for extended
periods (on the order of months or even years), while being
exposed to a serve thermal condition in the space environment
[5,6]. During the long-term storage in spacecraft, the deployable
structures are subjected to a constant deformation/strain that
causes substantial stress relaxation due to the viscoelasticity of
constituent polymers, which may lead to a reduction in the stored
strain energy and ultimately produce an impact on their deploy-
ment performance [7]. A series of experimental tests have been
conducted recently by NASA under a Game Changing Development
Program (GCDP) project to characterize the influence of viscoelas-
tic relaxation on the deployment performance of composite
deployable boom structures [8–10]. It is reported that the deploy-
ment performance of composite structures will degrade obviously
during storage until at one point that the structure will entirely fail
to deploy, and the variation of environmental temperature also has
a significant effect on the degradation of deployment rate. As it is
extremely unlikely that the large-scale space structures will not
be stowed in a coiled/folded configuration before launching, it is
crucial to spacecraft designing to know how long a deployable
structure can be stored without causing deployment failure. On
the other hand, the viscoelasticity can sometimes be employed as
a source of damping for lightweight space structures, and by
understanding how the stiffness of composite laminates decreases
over time, a spacecraft engineer who attempts to slow down the
deployment can then know how long and at what temperature
to store the structures to obtain a desirable performance [11–15].

Several studies have been conducted for the purpose of gaining
knowledge about the viscoelastic behavior of thin-walled deploy-
able structures made of composite laminates. A rigorous viscoelas-
tic model for general composite structures ought to consist of
multiscale modeling techniques, which from bottom to top are
known as the RVE analysis at micro-level, the calculation of ABD
matrix at meso-level, and the simulation of general composite
structures at macro-level [17]. Following this strategy, Kwok
Fig. 1. Notable examples of thin-walled stored strain energy deployable structures made
before and during launch, and are able to deploy by releasing the stored strain energy f
folded, and fully folded configuration. (b) Composite thin-walled lenticular tube (CTLT)
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et al. [18] proposed a general viscoelastic model that efficiently
predicts the deployment performance of plain-weave composite
tape-spring shells that are deployed after being held folded for a
given period of time. A two-step homogenization procedure is
applied to determine the relaxation ABD matrix of viscoelastic
plane-weave laminate; the first homogenization at microscale
deals with determining the effective relaxation properties of com-
posite tows from fiber and matrix properties, and the second
homogenization at mesoscale yields the relaxation ABD matrix of
the plain-weave laminate. Finally, the relaxation ABD matrix is
coded into a user defined shell section subroutine to model the vis-
coelastic behavior of macroscale general composite shell struc-
tures. A similar strategy was also formulated by Liu et al. [19,20]
who used mechanics of structure genome (MSG) to predict the vis-
coelastic behavior of textile composites. For unidirectional cross-
ply laminates, however, the two-step homogenization procedure
can be further simplified by avoiding the ABD calculation at mesos-
cale and bridging the microscale and macroscale analysis via built-
in functions in commercial finite element (FE) packages.

Very recently, Fernandes et al. [21] proposed a numerical
approach that simulates the viscoelastic relaxation of unidirec-
tional composite laminates by employing the idea of ’fictitious’
temperature. The stacking sequence of the laminates is defined
by using a composite shell section, and the time-dependent prop-
erties for each lamina are correlated to a set of ’fictitious’ temper-
atures. The material properties of the composites could then be
updated from an unrelaxed to a relaxed state by inducing a change
in the ’fictitious’ temperature. This numerical practice provides an
advantage over the aforementioned two-step homogenization
method because the time-dependent lamina properties are directly
used in the macroscale composite structure analysis by utilizing
built-in functions in commercial software, thus avoiding the calcu-
lation of ABD matrix at mesoscale. In other words, an efficient
macroscale viscoelastic model for general laminated shell struc-
tures is readily available as long as a microscale RVE analysis is
performed and the time-dependent lamina properties are
obtained.

A common approach to estimating the effective relaxation
properties of viscoelastic composite lamina is to homogenize the
properties of the fiber and matrix within a periodic unit cell. Sev-
eral theoretical homogenization methods are available. For exam-
ple, analytical closed form expressions for the effective
coefficients of fibrous viscoelastic composites are obtained in
[22–24] by means of the two-scale Asymptotic Homogenization
of composite laminates. These structures are elastically folded or coiled for storage
or use once in orbit. (a) Composite tape-spring hinge (CTSH) in deployed, partially
partially coiled around a cylindrical hub, modified from [16].
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Method (AHM). Given that analytical solution can only be derived
for a few simple composite structures, semi-analytical techniques
combing AHM with FEM may be required for analyzing more com-
plex microstructures [25,26]. Besides, the micromechanics-based
FE-RVE approach has been used for decades as powerful tools for
the same purpose [27–32]. In general, the FE-RVE homogenization
approach takes full advantage of powerful functions in commercial
FE packages such as ANSYS and ABAQUS, which would facilitate
interaction between academia and industry. Moreover, all compu-
tations with FE-RVE model could be accomplished directly in the
time domain, hence the Laplace transform is not needed in this
theory.

For the continuous fiber-reinforced unidirectional composites,
it is often assumed that fibers are uniformly distributed in the
matrix and the fiber arrangement follows regular, repeated pat-
terns as shown in Fig. 2. We note that although fibers are likely
to distribute in a random manner in reality, the implementation
of a regular fiber arrangement provides high enough accuracy at
low computational cost [33,34]. The basic idea of RVE homogeniza-
tion is to evaluate the response of a microscale RVE subjected to
simple deformation modes such as uniaxial tension and simple
shear, and the core of this technique rests on ensuring the external
surfaces of the RVE remain periodic in the deformation process,
which, requires the implementation of appropriate periodic
boundary conditions (PBCs). The implementation of PBCs is achiev-
able in commercial FE packages but generally requires extensive
in-house programming [35]; otherwise complex and time-
consuming user inputs may be needed. A number of plug-in tools
to address this issue have been developed within commercial FE
packages to facilitate the set-up, analysis and post-processing of
RVE models [36–38], however, most of them have been limited
to analyzing the homogenized properties of elastic RVEs.

The main novelty of this work is to develop a user-friendly plug-
in tool that provides an easy-to-use, robust and fast technique for
users to evaluate the effective relaxation properties of viscoelastic
composites, without the need to derive complex formulas. Having
obtained the viscoelastic properties of each lamina, we also show
Fig. 2. Geometry of unidirectional composites with regular fiber arrays. Cross-section vie
(d) square array, (e) diamond array, and (f) hexagonal array.

3

how these properties can be used to model the viscoelastic behav-
ior of composite laminates and macroscale deployable shell struc-
tures, by utilizing built-in functions in commercial package
without further programming work.

Firstly, we establish a constitutive model for viscoelastic unidi-
rectional composites by considering a microscale representative
volume element (RVE). A user-friendly interface plug-in tool is
developed in Abaqus/CAE to estimate the effective viscoelastic
properties of unidirectional composites by taking as input the
microstructure geometry as well as the properties of constituent
fiber and matrix materials. The interfaces of the tool allow users
to automatically create FE-RVE models, run stress relaxation anal-
ysis and return the effective properties of the composites as out-
put. The efficiency of the proposed tool was validated by solving
some benchmark problems for both elastic and viscoelastic cases.
By taking advantage of the plug-in tool, a parametric numerical
study has been conducted to investigate the effect of variation in
microstructure geometry and environmental temperature on the
viscoelastic relaxation of unidirectional composites. We then show
that the time-dependent lamina properties output by the plug-in
can be subsequently used to model the viscoelastic behavior of
composite laminates at macroscale with the help of Abaqus
built-in functions to define the stacking sequence and accordingly
update the material properties. Specifically, taking the composite
tape-spring hinge (CTSH) as an example, we formulated a 3D shell
FE model and quantified the effect of long-term stowage on the
deployment dynamics of stored strain energy deployable struc-
tures. It is shown, in good agreement with previous experimental
works, that the long-term stowage would lead to a significant
decrease in the deployment rate of the hinge when compared to
the unstored case.

The paper is organized as follows. Section 2 presents the theo-
retical basis for the constitutive model of viscoelastic unidirec-
tional composites. Section 3 describes the development and
implementation details of the Abaqus plug-in Viscoelastic RVE Cal-
culator and a user-defined material subroutine UMAT for evaluat-
ing the effective time-dependent material properties of
w of (a) square array, (b) diamond array, and (c) hexagonal array. RVE geometries in
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unidirectional composites by considering a viscoelastic RVE. The
efficiency of the proposed tools is verified and validated by solving
a series of benchmark problems consist of both elastic and vis-
coelastic cases in Section 4. In Section 5, a 3D shell model for CTSH
is introduced and the simulation results are compared to previ-
ously reported experimental data, highlighting the effect of long-
term storage on the deployment dynamics of deployable struc-
tures. Finally, concluding remarks are included in Section 6.

2. Theoretical basis

2.1. Properties of constituents

The composite materials are made of two phases of constituent
materials: fiber reinforcements and polymer matrix. The stress
relaxation in composite materials is primarily due to the inherent
viscoelasticity of the polymer matrix, since the most commonly
used reinforcing fibers are inorganic (e.g., carbon, glass) and their
viscosity is negligible. Accordingly, in this work we assume a linear
elastic behavior of the fibers, while the polymer matrix is treated
as an isotropic and linear viscoelastic material. The viscoelasticity
of a material can be characterized by considering a uniaxial tensile
test in which a time varying strain e tð Þ is applied to the material.
The stress r tð Þ is then measured as a function of time t as follows
[39]:

r tð Þ ¼
Z t

0
E t � sð Þ de sð Þ

ds
ds ð1Þ

where E t � sð Þ is the time-dependent relaxation modulus function
that characterizes the material’s response. This constitutive behav-
ior can be understood that the value of r at time t depends on all
the values of e sð Þ for s varying from 0 to t.

The expression of E tð Þ can be experimentally illustrated by con-
sidering a relaxation test in which a strain e is suddenly applied to
a specimen and then held constant for a long time. The beginning
of the experiment, when then strain is suddenly applied, is taken as
zero time, so that

r tð Þ ¼ E tð Þecst since _e ¼ 0 for t > 0ð Þ ð2Þ
where ecst is the fixed strain.

A Prony series is commonly used to approximate the relaxation
modulus over a wide range of time scales based on the generalized
Maxwell model as follows:

E tð Þ ¼ E1 þ
Xn
i¼1

Eie
� t
si ð3Þ

where E1 is the long-term modulus, and Ei and si are the modulus
and relaxation time constant of the i-th arm of the generalized Max-
well model. Another equivalent form for the time-dependent relax-
ation modulus is expressed as

E tð Þ ¼ E0 �
Xn

i¼1

Ei 1� e�
t
si

� �
ð4Þ

where E0 is the instantaneous modulus and E0 ¼ E1 þPn
i¼1Ei.

Temperature has a significant effect on the time-dependent
behavior of a viscoelastic material. Specifically, a long-time relax-
ation process of a material at low temperatures is somehow equiv-
alent to a short-time relaxation process at high temperatures. The
temperature dependence of the relaxation modulus is correlated to
time through the time–temperature superposition principle, in
which the relaxation times at two temperatures are related by a
shift factor aT .

aT ¼ s Tð Þ
s T0ð Þ ð5Þ
4

A commonly used shift function for aT is defined by the Williams-
Landel-Ferry (WLF) approximation, which takes the following form:

logaT ¼ � C1 T � T0ð Þ
C2 þ T � T0ð Þ ð6Þ

where T0 is the reference temperature at which the relaxation data
is given, T is the temperature of interest, and C1 and C2 are the cal-
ibration constants at the reference temperature.

2.2. Constitutive modeling of unidirectional viscoelastic composites

The unidirectional composites that consist of elastic oriented
fibers embedded into an isotropic viscoelastic matrix are generally
assumed to be linear, orthotropic and viscoelastic, for which the
homogenized macroscopic constitutive equations can be realized
by expanding the 1D stress relaxation relation in Eq. 2 to a 3D
stress relaxation stiffness matrix relation:

r tð Þf g ¼ C tð Þ½ � ecst� � ð7Þ
where C tð Þ½ � is the effective relaxation stiffness matrix, and r tð Þf g
and ecstf g refer to the macro-stress and macro-strain matrix, the
component of which is defined by averaging the heterogeneous
stress and strain tensor over the volume of the RVE as given by
Eqs. 8 and 9. Periodic boundary conditions are required to ensure
the homogenization of the microstructure, and a more detailed
description of the governing equations of this problem can be found
in the early work of Sun and Vaidya [27].

rij tð Þ ¼ 1
V

Z
V
rij x; y; zð ÞdV ð8Þ

eij tð Þ ¼ 1
V

Z
V
eij x; y; zð ÞdV ð9Þ

The component form of the constitutive relation [Eq. 7] can be writ-
ten as follows using the Voight notations:

r11 tð Þ
r22 tð Þ
r33 tð Þ
r23 tð Þ
r31 tð Þ
r12 tð Þ

2
666666664

3
777777775
¼

C11 tð Þ C12 tð Þ C13 tð Þ 0 0 0
C12 tð Þ C22 tð Þ C23 tð Þ 0 0 0
C13 tð Þ C23 tð Þ C33 tð Þ 0 0 0

0 0 0 C44 tð Þ 0 0
0 0 0 0 C55 tð Þ 0
0 0 0 0 0 C66 tð Þ

2
666666664

3
777777775

ecst11

ecst22

ecst33

ccst23

ccst31

ccst12

2
666666664

3
777777775

ð10Þ
The entries in the relaxation stiffness matrix Cij can be determined
through a series of relaxation tests in which a constant macro-strain
matrix ecst is applied to the homogenized RVE and then the macro-
stress matrix r tð Þ is measured as a function of time t. For example,
in loading case 1, a constant macroscopic strain ecst11 was applied
along 1-direction and all the other strains are set to zero, and in this
case the C11 tð Þ;C12 tð Þ and C13 tð Þ are computed as:

C11 tð Þ ¼ r11 tð Þ=ecst11 ; C12 tð Þ ¼ r22 tð Þ=ecst11 ; C13 tð Þ
¼ r33 tð Þ=ecst11 ð11Þ

Consequently, all the relaxation stiffness matrix entries are calcu-
lated by considering in total six loading cases as listed in Table 1.

Notice that each entry Cij tð Þ is a function of time and can be
approximated by a Prony series having the same relaxation times
as the matrix but different Prony coefficients.

Cij tð Þ ¼ Cij;1 þ
Xn

k¼1

Cij;ke
� t
si ¼ Cij;0 �

Xn
k¼1

Cij;k 1� e�
t
si

� �
ð12Þ

where Cij;1 and Cij;k are the mechanical parameters to be
determined.



Fig. 3. Viscoelastic RVE Calculator plug-in in Abaqus main menu.

Table 1
Estimation of stiffness matrix constants Cij under six loading cases.

Loading case Calculation of Cij

e11 ¼ ecst11 ; e22; e33; c23; c31; c12 ¼ 0 C11 tð Þ ¼ r11 tð Þ=ecst11 ;C12 tð Þ ¼ r22 tð Þ=ecst11 , C13 tð Þ ¼ r33 tð Þ=ecst11

e22 ¼ e022; e11; e33, c23; c31; c12 ¼ 0 C12 tð Þ ¼ r11 tð Þ=ecst22 ;C22 tð Þ ¼ r22 tð Þ=ecst22 , C23 tð Þ ¼ r33 tð Þ=ecst22

e33 ¼ ecst33 ; e11; e22, c23; c31; c12 ¼ 0 C13 tð Þ ¼ r11 tð Þ=ecst33 ;C23 tð Þ ¼ r22 tð Þ=ecst33 , C33 tð Þ ¼ r33 tð Þ=ecst33

c23 ¼ ccst23 ; c31; c12, e11; e22; e33 ¼ 0 C44 tð Þ ¼ r23 tð Þ=ccst23

c31 ¼ ccst31 ; c23; c12, e11; e22; e33 ¼ 0 C55 tð Þ ¼ r31 tð Þ=ccst31

c12 ¼ ccst12 ; c23; c31, e11; e22; e33 ¼ 0 C66 tð Þ ¼ r12 tð Þ=ccst12
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For particular cases where deformation of composites occurs in
a short time the viscosity of materials can be neglected, and the
constitutive equations (Eqs. 7 and 10) will reduce to conventional
elastic orthotropic stress–strain relations. The stiffness matrix C½ �
would become a constant matrix with each entry defined by the
instantaneous value of Cij tð Þ as follows:

Cij ¼ Cij;0 ¼ Cij;1 þ
Xn
k¼1

Cij;k ð13Þ

The effective engineering constants for elastic unidirectional com-
posites such as E1; E2; m12; m23;G12;G23 can be finally obtained by cor-
relating each component described as follows:

S½ � ¼ C½ ��1 ¼

1
E1

� v21
E2

� v31
E3

0 0 0

� v12
E1

1
E2

� v32
E3

0 0 0

� v13
E1

� v23
E2

1
E3

0 0 0

0 0 0 1
G23

0 0

0 0 0 0 1
G13

0

0 0 0 0 0 1
G12

2
666666666664

3
777777777775

ð14Þ

where S½ � is the compliance matrix, which is defined as the inverse
of the stiffness matrix C½ �.
3. Software methodology and implementation

This section presents the development and implementation
details of the Abaqus plug-in Viscoelastic RVE Calculator and a
user-defined material subroutine UMAT for evaluating and simu-
lating the effective relaxation stiffness matrix of viscoelastic unidi-
rectional composites through the microscale RVE approach.

3.1. Structure of the plugin

The plug-in has been developed in Abaqus/CAE 2020, thus users
are suggested to use the same or later version to avoid problems
executing the plug-in. The python code for the plug-in is available
upon reasonable request to the corresponding author, and the
installation is simple and intuitive: place the code in the
abaqus_plugins directory before starting the software. Once suc-
cessfully installed, in the main menu bar of Abaqus one can find
the plug-in Viscoelastic RVE Calculator under the tab Plug-ins, see
Fig. 3.

The plug-in consists of three tabs which cover all stages from
pre- to post-processing: it can be used to automatically create
the FE-RVE model, assign appropriate material properties to pre-
defined fiber and matrix elements, generate periodic boundary
conditions (PBC) and run the stress-relaxation analysis, and return
the results as requested. The plug-in provides functionalities for
calculating the effective material properties from both elastic RVEs
and viscoelastic RVEs. The use of the plug-in with step-by-step
procedures and output for calculating elastic and viscoelastic RVEs
is presented in Video S1 and S2 in the Supplementary Information.
5

1) Create RVE: The first tab of the plug-in is Create RVE which
provides functionality for defining geometry and finite element
mesh of certain types of RVE by specifying a limited number of
input parameters. First, the plug-in allows the user to select one
from the RVE library of three idealized RVE models characterized
by regular fiber arrays. These models in the library are shown in
Fig. 3 and include the square array, diamond array and hexagonal
array. Note that perfect bonding conditions are assumed at the
interface between the matrix and fiber. Next, the user has to input
the fiber volume fraction as well as the RVE length (denoted by l) to
describe the RVE geometry; the input parameter of edge seeds
determines the number of elements across the RVE edge l. By
default, the quadratic tetrahedral elements (Abaqus element type
C3D10) are employed to automatically discretize the RVE geome-
try in the plug-in. To ensure the proper implementation of PBC,
one eighth of the RVE is created and meshed first, and then it is
repeated to generate the full RVE mesh model according to
symmetry.

2) Edit materials: The finite elements of the RVE are automati-
cally grouped into two elements sets as fiber and matrix, as indi-
cated by the colors in Fig. 4(a). Next, the user is prompted to
assign appropriate material properties to these pre-defined fiber
and matrix elements sets. As has been explained in Section 2.1,
the fiber is assumed to be linear, elastic, and isotropic or trans-
versely isotropic; while the matrix is modeled as linear, elastic or
viscoelastic, and isotropic. These material properties are allowed
to be defined directly through Abaqus material module GUI. The
Edit materials tab, as shown in Fig. 4(b), then could be used to
assign the appropriate material properties to the fiber and matrix
domain, respectively.

3) Generate PBC and calculate: Fig. 4(c) shows the GUI interface
of the last tab Generate PBC and calculate of the plug-in, which is
developed to automatically generate periodic boundary conditions,
successively run the aforementioned six load cases in Table 1, and
post-process the calculations to obtain the effective time-
dependent relaxation stiffness matrix coefficients. The results are
consequently saved in the Abaqus work directory under.csv files.
To begin with, the user has to select an applicable RVE model
and part to analyze; note that the RVE part should be created with



Fig. 4. Tab GUI windows in the plug-in: (a) Create RVE, (b) Edit materials, and (c) Generate PBC and calculate.
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the definition of constituent materials’ properties and meshing,
which can be accomplished either by using the above two tabs
or manually in Abaqus GUI. Notice that used in conjunction with
other previously developed software programs such as RVE for
composites [38], this tab could be readily used to predict the effec-
tive mechanical properties of composites with even more complex
fiber distributions. The user is also allowed to set the mesh map-
ping accuracy for generating the periodic boundary conditions;
we note that the source code of EasyPBC was employed here and
more details about the implementation of periodic boundary con-
ditions can be found in the reference [37]. Next, the number of
CPUs to use should be specified, and the user subroutine file can
be prescribed if required to define the constituent materials’ prop-
erties. Finally, the last panel estimating the effective stiffness matrix
provides user two functions to perform: (i) if the matrix is treated
as a linear elastic material, the constant stiffness matrix
coefficients for the orthotropic elastic RVE will be estimated, as
well as the corresponding engineering constants; and (ii) if the
matrix is treated as a linear viscoelastic material, the effective
relaxation stiffness matrix coefficients for the orthotropic
viscoelastic RVE will be estimated. In the former case, the elastic
behavior of RVE is analyzed with linear static analysis (*Static,
General in Abaqus) by considering the six loading cases given in
Table 1. In the latter case the viscoelastic behavior of RVE is ana-
lyzed with two quasi-static visco analysis steps (*Visco in Abaqus).
The first step is defined to apply the instantaneous strains, and the
second step is developed for holding the applied strains constant
for a specified length of simulation time during which the
6

time-dependent stress relaxation response of the viscoelastic RVE
is computed. The plug-in allows the user to specify the relaxation
time period as well as the minimum number of increments as
input parameters to control the time length and interval of data
collection.

3.2. Equivalent homogenized model with UMAT

As mentioned above, our plug-in Viscoelastic RVE Calculator is
capable of adequately evaluating the effective elastic or viscoelas-
tic orthotropic material properties of the unidirectional composites
by taking constituents properties as input based on micromechan-
ics approaches. In practice, however, it is unrealistic and computa-
tionally inefficient to model every fiber within the matrix in the
composites. Alternatively, the macro-level simulations are fre-
quently based on finite element method performed by assuming
that the composite structures is composed of multilayer
homogeneous materials by assigning homogenized properties to
each lamina layer. Unfortunately, the orthotropic material behav-
ior that can be modeled by commercial finite element packages
such as Abaqus is restricted to circumstances involving simple
elasticity and plasticity but not viscoelasticity. When the matrix
is treated as a linear elastic material and the RVE demonstrates
orthotropic elastic behavior, the engineering constants such as
E11; E22; E33;v23;v31;v12;G23;G31;G12 can be defined directly with
the built-in functionalities in Abaqus GUI; whereas for modeling
the orthotropic relaxation behavior of a viscoelastic RVE, an addi-
tional user-defined material subroutine UMAT is needed.
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The implementation of UMAT is not complicated since the Jaco-
bian matrix is readily available according to the stress–strain rela-
tions in Eq. 10. For small-deformation problems, the consistent
Jacobian matrix is defined as:

DDSDDE ¼ @rA

@�A
ð15Þ

where the superscript ðÞA denotes a quantity in Abaqus notation.
The terms rA and eA is a 6� 1 array, and DDSDDE is a 6� 6 matrix.
DDSDDE I; Jð Þ defines the change in the Ith stress component caused
by an infinitesimal perturbation of the Jth component of the strain
increment array. Notice that Abaqus uses a different notation and
DDSDDE I; Jð Þ ¼ CIJ holds true, except for two cases where
DDSDDE 4;4ð Þ ¼ C66 and DDSDDE 6;6ð Þ ¼ C44 [40].

The Abaqus UMAT is developed to compute the homogeneous
orthotropic linear viscoelastic behavior of unidirectional compos-
ites by using the relaxation stiffness matrix coefficients obtained
from RVE analysis as input. Hence, the complex composite struc-
tures that consist of multilayer unidirectional lamina can be mod-
eled by defining homogenized viscoelastic properties to each layer
by using the UMAT subroutine. This procedure is necessary in
order to calculate the ABD matrix of the composite laminates
through a second homogenization computation at mesoscale,
which is frequently required for the viscoelastic modeling of
woven composite structures [18].
4. Numerical examples

4.1. Calculation of effective properties for elastic RVE

We began by calculating the effective properties for elastic RVE
by treating both matrix and fiber as linear elastic materials.
Although analytical and numerical approaches have been well-
established in the literature [27,29] to evaluate the effective elastic
properties of unidirectional composites made of elastic matrix and
fibers using RVE analysis, here we reproduce the benchmark case
to validate the effectiveness of Viscoelastic RVE Calculator plug-in
and reveal the effect of fiber arrangement on the predictions of
effective elastic properties. In this case, the fiber and matrix prop-
erties are taken from Ref. [29], in which the authors developed a
micromechanical FE-RVE model with a random fiber array. The
matrix was modeled as a linear isotropic elastic material with
Young’s modulus Em ¼ 3:31 GPa and Poisson’s ratio mm ¼ 0:35,
and the fiber was modeled as a linear transversely isotropic elastic

material with longitudinal Young’s modulus Ef
1 ¼ 303 GPa, trans-

verse Young’s modulus Ef
2 ¼ 15:2 GPa, longitudinal Poisson’s ratio

mf12 ¼ 0:2, transverse Poisson’s ratio mf23 ¼ 0:2, and longitudinal

shear modulus Gf
12 ¼ 9:65 GPa. A variety of elastic RVEs with three

different fiber arrangements, i.e., square array, diamond array and
hexagonal array, were generated by setting and varying fiber vol-
ume fraction Vf from 0.1 to 0.6 using the Viscoelastic RVE Calculator
and the effective material properties are calculated and compared
to that of elastic FE-RVE with random fiber distribution taken from
[29] in Fig. 5. It is shown that, overall, in each subplot, predictions
from three model calculations with different fiber arrangement
agree fairly well, but some deviations still exist in particular cases,
which reflects the effect of fiber arrangement. For effective longitu-
dinal Young’s modulus E1, longitudinal Poisson’s ratio m12, and lon-
gitudinal shear modulus G12, the values predicted by the three
models are all in excellent agreement with that noted by random
fiber distribution, which indicates that fiber arrangement has a
negligible effect on the these three effective longitudinal material
properties. In contrast, for effective transverse material properties
such as transverse Young’s modulus E2, transverse Poisson’s ratio
7

m23, and transverse shear modulus G23, the values predicted by
the hexagonal array agree very well with those by the random
array, while slight deviations are observed in the square and dia-
mond array.
4.2. Calculation of effective relaxation properties for viscoelastic RVE

Next, to further validate the functionality of the tools for pre-
dicting effective relaxation modulus of viscoelastic composites,
we calculated the orthotropic stress-relaxation behavior of vis-
coelastic RVE using the Viscoelastic RVE Calculator plug-in, and then
we implemented the effective viscoelastic properties into a user-
defined material subroutine UMAT for homogenization. In this
benchmark case, the fiber is modeled as an isotropic and linear

elastic material with Young’s modulus Ef ¼ 80GPa and Poisson’s
ratio mf ¼ 0:3, and the matrix is modeled as an isotropic and linear
viscoelastic material with a constant Poisson’s ratio mm ¼ 0:4 and
relaxation modulus expressed in Eq. 3 by Em

1 ¼ 4GPa, Em
1 ¼ 4 GPa,

and s1 ¼ 30. The fiber volume fraction is set to 0.2 and the fiber
is arranged in square array. By taking the constituent material
properties as input into the plug-in, the six independent
coefficients of the effective stiffness matrix for the viscoelastic
composites C11 tð Þ;C12 tð Þ;C22 tð Þ;C23 tð Þ;C44 tð Þ, and C55 tð Þ are
calculated as output. The independent coefficients Cij tð Þ predicted
by the Viscoelastic RVE calculator plug-in are subsequently
determined as a function of time and the time history of each
independent stiffness matrix coefficient Cij tð Þ is fitted to Eq. 12
using the leastsq function from Python’s scipy.optimize library,
and the Prony coefficients for each coefficient Cij tð Þ are listed in
Table 2. The consistent Jacobin matrix is then readily available as
described in Section 3.2. A homogeneous domain with equivalent
orthotropic viscoelastic properties is therefore defined through a
user defined material subroutine UMAT. The computed relaxation
results predicted by the Viscoelastic RVE Calculator plug-in and
UMAT are given in Fig. 6. Recently, Rodríguez-Ramos et al. [24]
formulated a closed-form theory for computation of the relaxation
effective moduli for fibrous viscoelastic composites using the
asymptotic homogenization method (AHM) [25,26,23], and the
theoretical results predicted by AHM are also plotted here for
comparison. As can be seen that all results agree very well with
each other.

In addition, Fig. 6 also gives as inserted figures the deformed
mesh with contour of von Mises stress distribution. It is clearly
seen that the uniformly unit cell with homogeneous material prop-
erties defined by UMAT deforms homogeneously and exhibits a
similar response over the entire domain, while the mesh of two-
material RVE exhibits significantly different stress spatially due
to the heterogeneous material definition of the matrix and fiber
phases. Finally, it can be concluded that the one-material homoge-
neous model defined by the UMAT yields equivalent homogeneous
relaxation response out of relaxation data obtained by the two-
material defined RVE in the plug-in. We note that from the point
of view of mechanics of composites, our plug-in software provides
functionalities for finding the average orthotropic viscoelastic
properties of a single unidirectional lamina from the known prop-
erties of the constituent materials and the microstructure geome-
try. This procedure is referred to as micromechanics of a lamina.
The relaxation constitutive relations for a unidirectional lamina
are subsequently developed and implemented into a UMAT sub-
routine, by which the lamina is modeled as a homogeneous layer.
This is called the macromechanics of a lamina. A true composite
structure generally consists of laminates containing various lami-
nas stacked on each other. Knowing the macromechanics of single
unidirectional lamina, one could further develop the macrome-
chanics of a laminate by calculating the ABD matrix [41,17]. This



Fig. 5. Comparison of the plug-in calculated effective elastic material properties with three different fiber arrangements, i.e., square array, diamond array and hexagonal
array, to random fiber distribution results extracted from [29], according to fiber volume fraction Vf . (a) longitudinal Young’s modulus E1, (b) transverse Young’s modulus E2,
(c) longitudinal Poisson’s ratio m12, (d) transverse Poisson’s ratio m23, (e) longitudinal shear modulus G12, (f) transverse shear mod.ulus G23.

Table 2
Prony coefficients (in GPa) and relaxation time (in second) for the viscoelastic RVE.

k C11;k C12;k C22;k C23;k C44;k C55;k sk

0 32.38 13.20 21.56 13.40 3.71 4.00 -
1 8.03 6.37 10.38 6.48 1.81 1.92 30

Fig. 6. Variation of effective stress relaxation stiffness matrix coefficients Cij tð Þ as a function of time predicted by the Viscoelastic RVE Calculator plug-in, UMAT and AHM [24].
(a) C11, (b) C12, (c) C22, (d) C23, (e) C44, and. (f) C55.
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knowledge will form the basis for the mechanical design of general
structures made of composite materials.
4.3. Effect of fiber arrangement and environmental temperature

Having solved the benchmark problems and validated the accu-
racy of the proposed analysis tools, we then move on to apply the
tools to analyze the effect of RVE microstructure geometry, i.e.,
fiber volume fraction and fiber arrangement, as well as environ-
mental temperature on the average orthotropic relaxation proper-
ties of viscoelastic composites. A real-world engineering example
was considered in this case. The fiber and matrix properties are
obtained from experimental tests of real samples in the literature
[18,20]. The fiber is assumed as linear elastic and transversely iso-

tropic, and the properties are Ef
1 ¼ 233 GPa, Ef

2 ¼ Ef
3 ¼ 15 GPa,

Gf
12 ¼ Gf

13 ¼ 8:963 GPa, Gf
23 ¼ 5:639 GPa, mf12 ¼ mf13 ¼ 0:2, and

mf23 ¼ 0:33. For the matrix, the relaxation times and Prony coeffi-
cients at the reference temperature T0 ¼ 40�C are given in Table 3.
The matrix properties are expressed in terms of relaxation times
and Prony coefficients in Eq. 3, and a constant Poisson’s ratio
0.33 is assumed. To capture the temperature effect on the relax-
ation behavior, the temperature shift factor is adopted in terms
of the Williams-Landel-Ferry (WLF) equation in Eq. 6, and the
material constants C1 and C2 were set to C1 ¼ 28:3816 and
C2 ¼ 93:291.

We began by analyzing the effect of RVE geometry parameters
such as fiber volume fraction and fiber arrangement on the average
orthotropic properties of viscoelastic RVEs. This problem was pre-
viously studied by Kwok et al. [18] and Liu et al. [20] by using dif-
ferent methods, however, in previous studies the difference
between various fiber arrangements (i.e., square array, diamond
array and hexagonal array) was ignored, and only the relaxation
properties of a particular viscoelastic RVE characterized by the
square array and a fixed fiber volume fraction Vf ¼ 0:64 were pre-
dicted. Here, taking advantage of the developed software tools, we
report a parametric study of RVE geometry including three differ-
ent fiber arrangements and predict the average relaxation behavior
for these RVEs at a variety of fiber volume fractions and environ-
mental temperatures. Fig. 7 gives the relaxation results for RVEs
containing different fiber arrangements at three volume fractions
of Vf ¼ 0:2;0:4; 0:64 when environment temperature is kept con-
stant and equal to the reference temperature 40�C. It is shown that
for C11;C12;C22 and C55 the relaxation results are almost unaltered
by variations in fiber arrangement. By contrast, for C23 and C44 rea-
sonable deviations exist among the three sets of data. Specifically,
the relaxation curve for RVE with hexagonal fiber array is located
in the middle of the three sets of data, and a higher value can be
observed in diamond array and lower in square array, and the devi-
ation is found to increase with the increase of fiber volume frac-
tion. We would also note that in such a real engineering
problem, C11 has a much weaker time dependence than the other
moduli which is attributed to the fact that the behavior in fiber
direction is dominated strongly by the time-independent behavior
of the fibers. We next proceed to analyze the effect of environmen-
tal temperature on the relaxation behavior of composites by spec-
ifying a fixed fiber volume fraction. Toward this end, in Fig. 8 we
report the relaxation results for RVEs characterized by same fiber
volume fraction of 0.64 under various environmental temperatures
Table 3
Prony coefficients and relaxation times for PMT-F4 epoxy matrix at the reference tempera

i 1 1 2 3

Emi [MPa] 1000 224.1 450.8 406.
si [s] - 1.0e3 1.0e5 1.0e

9

such as 30 �C, 40 �C and 50 �C. It can be seen in this figure that the
relaxation process of a composite material would be accelerated by
a higher experimental temperature, while a lower experimental
temperature would delay the relaxation process.

5. Application to composite tape-spring hinges

So far we have developed analysis tools that capable of predict-
ing the elastic or viscoelastic behavior of single unidirectional com-
posite lamina through micromechanics RVE analysis and we have
shown that the tools are efficiently applicable to a variety of differ-
ent situations in terms of fiber arrangement, fiber volume fraction,
and environmental temperature. Although we have demonstrated
the mechanics of a lamina with unidirectional fibers, it is impor-
tant to point out that our approach can be extended to analyze
the viscoelastic relaxation of general laminated structures that
consist of various laminas stacked on each other. In this section
we focus on deployable composite tape-spring hinge [see Fig. 1
(a)] and use the proposed analysis tools to reveal the effect of vis-
coelastic relaxation on its deployment dynamics. Fig. 9 shows the
geometry of the composite tape-spring hinge being considered in
this work. A specimen was usually manufactured by laying multi-
ple plies of carbon fiber fabric impregnated with epoxy resin on a
mandrel for curing. After cooling, the mandrel was pulled out and
two opposite parallel slots were cut by machine to obtain the final
geometry as depicted in Fig. 9. In the subsequent test, the tape
spring hinge specimen was first folded and stored for a given
length of time and then deployed by releasing one of the ends,
while the shape change during deployment was recorded with a
high-speed camera. More details about fabrication and test of this
structure can be found in Refs. [15,18,21]. In this study we will
focus on the numerical modeling of deployment dynamics of com-
posite tape-spring hinge with time-dependent viscoelastic relax-
ation effect accounted for.

The core of the modeling consists of definition of the relaxation
in material properties during the storage time period after folding
and before deployment. However, it is computationally impracti-
cable to explicitly simulate the relaxation behavior of a complex
laminated composite structure in its natural time scale since the
storage time is usually very long (on the order of months or even
years). Here we employ a technique recently proposed by Fernan-
des et al. [21] and simulate the relaxation of material properties by
using a set of distinct fictitious temperatures. First, we remind that
the time- and temperature-dependent properties of a particular
unidirectional lamina (characterized by a fiber volume fraction of
0.64 and hexagonal array) are readily identified from Fig. 8. In
Table 4 we list the material properties of a lamina at the initial
state and after being stowed at 50�C for 1 month, 1 year and
2 years, respectively. Each set of lamina properties in Table 4 is
related to a distinct fictitious temperature, and the relaxation of
the material properties will be achieved by specifying a change
in the fictitious temperature. It should be pointed out that the fic-
titious temperature does not represent the physical temperature of
the specimen and its change does not result in geometrical varia-
tions resulting from thermal-related phenomena. Instead, the
change of this fictitious temperature causes the numerical model
to update the material properties of the composite from an unre-
laxed state to a relaxed state, which shall be equivalent to the
relaxation observed due to an extended period of storage [21].
ture T0 ¼ 40�C.

4 5 6 7

1 392.7 810.4 203.7 1486.0
6 1.0e7 1.0e8 1.0e9 1.0e10



Fig. 7. Variation of average relaxation stiffness matrix coefficients Cij tð Þ as a function of time for viscoelastic RVEs characterized by different fiber arrangements and fiber
volume fraction. The environmental temperature is assumed as T ¼ 40�C. (a) C11, (b) C12, (c) C22, (d) C23, (e) C44, and (f) C55.

Fig. 8. Variation of average relaxation stiffness matrix coefficients Cij tð Þ as a function of time for viscoelastic RVEs characterized by different fiber arrangements and
environmental temperatures. The fiber volume fraction is assumed as Vf ¼ 0:64. (a) C11, (b) C12, (c) C22, (d) C23, (e) C44, and (f) C55.

Fig. 9. (a) Geometry of composite tape-spring hinge with dimensions (front view).
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Table 4
Estimated material properties of a unidirectional lamina after 1 month, 1 year and 2 years of relaxation at a temperature of 50 �C.

Relaxation time E1 GPa½ � E2; E3 GPa½ � m12; m13 m23 G12;G13 GPa½ � G23 GPa½ � Fictitious temperature

Initial 150.93 9.99 0.24 0.4 4.58 3.58 T0

1 month 149.97 6.57 0.24 0.4 2.84 2.35 T1

1 year 149.58 4.29 0.24 0.4 1.77 1.54 T2

2 years 149.50 3.73 0.24 0.4 1.52 1.34 T3

Fig. 10. Finite element model of composite tape-spring hinge with boundary conditions and loads.
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Fig. 10 presents a finite element mesh representation for the
composite tape-spring hinge with boundary conditions and loads.
The finite element model was constructed using four-node reduced
integration general-purpose shell elements with enhanced hour-
glass control (element type: S4R) in the commercial package Aba-
qus/Explicit 2020. Rigid cross-sections are formed by kinematically
coupling the nodes at two end regions (shown in grey in Fig. 10)) to
two reference points, Ref-A and Ref-B, respectively. To simulate the
complete test procedure [21], each simulation run consists of two
steps, where the first step generates the folded configuration of the
hinge, and the second step simulates its dynamic deployment. In
the first step, all six degrees of freedom of the reference point A
were restrained, defining a clamped condition, whereas for the ref-
erence point B two translational degrees of freedom along Y and Z
were left free and a prescribed rotational angle was applied along X
to induce folding of the hinge. The initial fictitious temperature of
T0 was applied to the entire structure. The hinge was folded over
180� with the initial material properties in a quasi-static manner,
resulting in a fully folded configuration fromwhich the subsequent
deployment initiates. In the deployment step, a change in fictitious
temperature was induced, and in the meantime the boundary con-
ditions applied to reference point B were removed instantaneously
Fig. 11. Deployment dynamics of the composite tape-spring hinge. (a) Experimental and
type correspond to finite element models with different mesh size. The experimental data
formed in the quasi-static .folding process.
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while the reference point A remained clamped. As a result, the
hinge was allowed to deploy at a degraded material state. It is
important to point out that on contrary to the folding simulation,
where the simulation time had no physical meaning but was sim-
ply determined such that the kinetic energy would be negligible in
the folding process, in the deployment analysis the simulation time
is the actual physical time over which the motion occurs and so it
is important to switch to a realistic model of the actual damping of
the structure [15]. Hence, in our simulations, a small viscous pres-
sure load was applied over the entire surface of the hinge through-
out the folding and deployment to simulate the air friction effect;
the viscosity coefficient was determined through a trial and error
process to better match the experimental results and was set to
1:5� 10�8. The density of the composite materials was set to
1580.76 kg/m3 and a gravity load was defined over the whole
structure, in the negative Z direction, throughout the analysis.

In order to validate the numerical model, we start by consider-
ing the deployment dynamics of the composite tape-spring hinge
that is deployed immediately after folding and without storage.
The initial material properties in Table 4 were used throughout
the whole simulation steps including folding and deployment.
Fig. 11(a) gives the evolution of deployment angle as a function
numerical evolution of deployment angle as function of time. The variations in line
(square markers) are taken from Ref. [21]. (b) Two different configurations (a and b)
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of time, where the numerical results (lines) are in good agreement
with the experimental data (square markers) reported by Fernan-
des et al. [21]. It is important to point out that there are two dis-
tinct set of deployment angle-time response curves that
randomly occur in the simulations. This is attributed to the vari-
ability in configuration of the hinge formed in the folding process,
as shown in Fig. 11(b). These two possible equilibrium folding
paths, which were previously reported by experimental observa-
tions in Ref. [15], are reproduced in our simulations by adjusting
the mesh size of the finite element model. We would like to note
Fig. 12. Deployment snapshots of the composite tape-spring hinge when the dep

Fig. 13. Deployment angle as function of time for composite tape-spring hinge after being
configuration a, (d) configuration b, for various relaxation time periods at 50 �C.
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that one of the two configurations occurs with same probability
in principle, and in numerical practice the variability may be
affected by rounding errors due to the large number of increments
required in the dynamic explicit procedure. More importantly, the
dynamic response of the hinge is distinct when the deployment
starts from different configurations. Specifically, in the case of con-
figuration a, the hinge is effectively shorter and it will rotate faster
in the deployment process. The deployment snapshots from simu-
lations are given in terms of both configurations in Fig. 12, showing
a good agreement with the previous reported experimental
loyment starts from fully folded (a) configuration a and (b) configuration b.

stowed in its fully folded (a) configuration a, (b) configuration b, and half folded (c)
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observations in Ref. [21]. Finally, the model was applied to simu-
late the effect of time- and temperature-dependent relaxation on
the deployment dynamics of the hinge. A fictitious temperature
change was introduced to switch the material properties from ini-
tial state to relaxed state in the deployment simulation. Fig. 13 pre-
sents the variation of deployment dynamics for the composite
tape-spring hinge stored at 50�C for different periods of relaxation.
In order to assess the effect of the amount of stowage strain on the
viscoelastic behavior, the structure was stowed under two folded
states, e.g., fully folded state in 180�, and half folded state in 90�.
In general, the simulation results show that whenever the hinge
was stowed in its fully or half folded configuration a or b, the
deployment of the hinge after stowage is about a fraction of second
slower than the initial unrelaxed case and the longer the storage
time the slower the deployment rotation, which agrees with the
findings of Fernandes et al. [21]. We acknowledge that this
research focuses only on the simulation and theoretical prediction
for the relaxation behavior of non-ageing linear viscoelastic com-
posite materials, further developments of the present work will
include the extension to ageing viscoelastic composite materials,
and validation of simulations to experimental results.
6. Conclusion

Fiber-reinforced polymer composites exhibit more or less mod-
ulus relaxation behavior due to the inherent viscoelasticity of poly-
mers. Knowledge of their viscoelastic behavior is essential to
achieve optimal design of the composites, especially for the design
of stored strain energy deployable structures in the aerospace
industry.

In the present paper, we proposed a finite element (FE) based
two-scale computational strategy that capable of evaluating the
viscoelastic behavior of unidirectional composite laminates and
general shell structures. At microscale, a numerical analysis tool
is developed and linked with Abaqus/CAE via a graphical user
interface plug-in called Viscoelastic RVE calculator herein, which
provides capabilities for calculating the orthotropic viscoelastic
properties of unidirectional composites by taking the microstruc-
ture geometry and the known properties of constituent materials
as input. A parametric study on the effect of microstructure geom-
etry and environmental temperature on the viscoelastic response
of unidirectional composites was conducted by taking advantage
of the efficiency of the tool. It is shown that the relaxation curve
for composites with hexagonal fiber array is always intermediate
between the curves obtained in the square and diamond array;
and unsurprisingly, the relaxation process would be accelerated
by a higher experimental temperature and delayed by a lower
one. We also show that the time-dependent lamina properties out-
put by the plug-in can be subsequently used to model the vis-
coelastic behavior of composite laminates at macroscale with the
help of Abaqus built-in functions to define the stacking sequence
and accordingly update the material properties. Particularly, we
formulated a 3D shell FE model and quantified the effect of long-
term stowage on the deployment dynamics of composite tape-
spring hinge to demonstrate the strategy. It is shown, in good
agreement with previous experimental works, that the long-term
stowage would lead to a significant decrease in the deployment
rate of the hinge when compared to the unstored case.

We would like to note that all the source codes of the plug-in
tool as well as the Abaqus scripts are made available to the com-
munity, alleviating the burdens of multi-scale viscoelasticity anal-
ysis of composite laminates and shell structures. This also makes
Viscoelastic RVE Calculator an open-source tool that enables devel-
opers to customize the software for specific purposes. We also
expect our multiscale computational strategy to be applied to
13
analyze the viscoelastic behavior of more general thin-walled com-
posite laminated structures such as composite lenticular tubes
[42], triangular rollable and collapsible booms [43], and other fold-
able thin shell space structures [4,44].

7. Data availability

The source codes of the plug-in tool as well as the benchmark
scripts are published open-source and can be downloaded from
https://github.com/Dr-Ning-An/Viscoelastic-RVE-Calculator
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