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A B S T R A C T

The ABD matrix is a fundamental method to characterize the overall stiffness behavior of laminated composite
structures. Although classical laminate theory has been widely used, it has limitations in predicting the ABD
matrix for woven composites. To address this issue, this paper presents a mesoscale homogenization approach
aimed at computing the ABD matrix for thin woven composites accurately. The mesoscale representative
volume element (RVE) of the woven composite is generated using TexGen and imposed with periodic boundary
conditions to enforce the Kirchhoff thin plate assumption. The ABD matrix is computed by conducting six
separate finite element simulations, each representing one simple in-plane or out-of-plane deformation in a
specified direction. Moreover, to facilitate the implementation of the method, an open-source plugin tool was
developed within ABAQUS CAE, automating the ABD matrix calculation for various types of woven composites
including 2D weave, 3D weave, and multiaxial. The accuracy of the proposed method was validated through
benchmark calculations against existing literature results.
1. Introduction

Composite materials have gained increasing popularity in various
high-performance structural designs including aerospace, automotive,
and civil engineering components, due to their remarkable mechanical
properties such as high specific stiffness and strength [1,2]. Unidi-
rectional laminates and woven composites are two commonly used
types of fiber-reinforced composites, each with its own characteristics
and advantages. Unidirectional laminates consist of multiple layers
with each layer having all fibers oriented in the same orientation and
embedded in a matrix material. Woven composites, on the other hand,
are composed of fiber yarns interlaced in a crisscross pattern, creat-
ing a woven-like structure with fibers oriented in multiple directions.
Woven composites offer several advantages compared to unidirectional
laminates, including enhanced mechanical isotropy, improved impact
resistance, and superior damage tolerance. However, these benefits
come with tradeoffs, such as increased manufacturing complexity and
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higher cost. The modeling of the stiffness behavior of woven compos-
ites is also a quite more complicated task compared to unidirectional
laminates.

The ABD matrix is a fundamental concept in classical laminate the-
ory (CLT) to characterize the effective stiffness properties of composite
laminates, which relates the strains (𝜀𝑥, 𝜀𝑦, 𝛾𝑥𝑦) and curvatures (𝜅𝒙,
𝜅𝒚 , 𝜅𝒙𝒚) in the midplane of the laminate to the resultant forces (𝑁𝑥,
𝑁𝑦, 𝑁𝑥𝑦) and moments (𝑀𝑥, 𝑀𝑦, 𝑀𝑥𝑦) exerted on the laminate. The
constitutive equation is given as follows:
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where the sub-matrices [𝐴] and [𝐷] represent the in-plane extensional
and out-of-plane bending stiffness properties of the laminate, respec-
tively, and [𝐵] represents the coupling between the in-plane and out-
of-plane loads and deformations. The ABD matrix provides valuable
insights into the deformation behaviors of a laminate under any com-
plex load conditions. It serves as a vital concept in the design and
analysis of composite laminated structures, and hence the accurate
calculation of the ABD matrix is crucial for analyzing any complex
behaviors of composite laminated structures.

CLT provides an effective analytical approach for determining the
ABD matrix of composite laminates made up of multiple layers of unidi-
rectional laminas. It is assumed that each unidirectional lamina within
the laminate is homogeneous and exhibits mechanical orthotropy, and
the laminate is composed of multiple laminas that are oriented ac-
cording to a predetermined stacking sequence. Each entry in the ABD
matrix is derived as a function of the mechanical properties of the
unidirectional lamina, the thickness of the laminate, and the prescribed
stacking sequence of fiber orientations [3]. CLT can also be employed to
analyze the effective properties for woven composites. Zhang et al. [4]
and Dang et al. [5–7] proposed an equivalent lamina element method
to predict the in-plane stiffness, strength, and progressive damage
of various types of woven composites. Their approach involved di-
viding a unit cell of the woven composite into several subcells and
representing each subcell with equivalent unidirectional laminates.
This conversion allowed the use of CLT to derive analytical solutions
of effective properties for woven composites. However, the existing
analytical solutions are limited to calculating the in-plane effective
properties of woven composites. Other researches have demonstrated
that the out-of-plane bending stiffness properties predicted by CLT are
far from experimental measurements for woven composites [8–14]. For
example, Soykasap [14] carried out experiments on thin laminates com-
posed of plain weave woven composites and reported a considerable
discrepancy of up to 400% in the bending stiffness when compared the
experimental results to the predictions made by CLT.

On the other hand, finite element (FE)-based homogenization ap-
proach offers an alternative numerical method for computing the ABD
matrix of woven composite. A mesoscale representative volume ele-
ment (RVE) of a woven composite typically comprises the structural
arrangement of yarns or fibers, along with their interactions and the
surrounding matrix materials. Researchers developed homemade pro-
grams to address the specific complex heterogeneity associated with
woven composites, allowing for accurate predictions of the laminate’s
overall mechanical properties [15,16]. Kueh and Pellegrino [17] de-
veloped a homogenized Kirchhoff plate approach to model the linear
elastic response of single-ply triaxial weave fabric composites. The
ABD matrix for the plate was computed by using the standard finite
element method with mesoscale RVE analysis, and the numerical results
were validated against experiments. Mallikarachchi [18] extended the
method to predict the ABD matrix for two-ply plain weave laminates
and examined the effect of different idealization of cross-sectional
and weave profiles using five different tow models and demonstrated
that the relative positioning of plies influences both extensional and
bending stiffness of the laminate. Gao et al. [19] applied a similar
multiscale strategy to predict the ABD matrix of 1/3 broken twill
weave composite laminates. The numerical predictions were validated
with experimental results and demonstrated a significant effect of the
asymmetric weave architecture on the tensile stiffness of the laminates.
In addition to the RVE approach, another homogenization approach
proposed by Yu et al. [20] is the mechanics of structural genome
(MSG) method. Under this theory, the minimal mathematical unit for
constructing macro structures is named the structural genome (SG),
which breaks the limitation of full periodicity required by the general
RVE model, enabling the unified construction of constitutive models
for multiscale structures including 3D constructs, beams, plates, and
shells. A notable advantage of MSG is the bidirectional communication
2

that facilitates between micro and macro structures: the SG model
provides constitutive relations for predicting macro responses, and the
responses at specific locations of the structure can be fed back to the
SG model to observe local fields within the microstructure [21–23].
These methods provide valuable insights for efficiently and accurately
predicting the equivalent stiffness, strength, and failure behaviors of
woven composites, and with special processing, they can be used to
obtain the ABD matrix of the woven composites [24].

The modeling strategy for predicting the ABD matrix for woven
composites can be summarized as a two-step multiscale homogeniza-
tion method [25,26], as depicted in Fig. 1. The first step involves
creating a microscale RVE that represents the microstructure of the
composite yarns. This step determines the effective material proper-
ties of the composite yarns through homogenization of the fiber and
matrix properties in the yarn microstructure. The second step utilizes
the obtained yarn properties to analyze the behavior of the woven
composite by considering a mesoscale RVE, which homogenizes the
yarn and matrix properties in the mesostructure of the woven com-
posite and yields the ABD matrix as a result. By implementing this
two-step homogenization approach into the standard finite element
method, researchers are able to predict the ABD matrix of woven
composites with improved accuracy. It is worth noting that the first
step of microscale RVE homogenization, which involves estimating the
effective orthotropic properties of the yarn, is the same as estimating
the properties of a continuous fiber-reinforced unidirectional lamina.
In this regard, a few user-defined programs and plugin tools have
been developed to simplify the pre-and post-processing of micro-RVE
analysis within commercial FE packages [27–29]. Among them, we
developed the ABAQUS plugin named Viscoelastic RVE Calculator which
provides an easy-to-use and robust way to evaluate both the elastic and
viscoelastic mechanical properties of the fiber-reinforced unidirectional
lamina in a previous study [29]. The implementation of periodic bound-
ary conditions is crucial in FE-RVE analysis. It is important to note
that the specific requirements for periodic boundary conditions can
differ between micro-RVE and meso-RVE [30]. The micro-RVE focuses
on capturing the interactions between individual fibers and the matrix
under six in-plane specific loading conditions, which include three axial
loadings and three shear loadings [see the left panel in Fig. 1]. In
contrast, the meso-RVE takes a larger-scale perspective and considers
the arrangement of multiple yarns and their interlacing pattern in
woven composites. It aims to capture the overall deformation of the
woven composite when it is subjected to not only in-plane extensional
loads but also out-of-plane bending moments [see the middle panel
in Fig. 1]. The calculation results of the micro-RVE analysis are the
engineering constants of the composite yarn, while the result yielded
by the meso-RVE analysis is the ABD matrix for the woven composite.
The ABD matrix can finally be used to define the constitutive behavior
of woven composites in the standard finite element analysis, facilitating
deformation analysis of any thin-walled composite laminates [see the
right panel in Fig. 1].

This study presents a mesoscale computational approach aimed at
determining the ABD matrix for a range of woven composite types.
Utilizing the Kirchhoff thin plate assumption and applying derived
periodic boundary conditions, the approach computes each entry of
the ABD matrix by considering the deformation of the RVE under
six distinct loading conditions—three in-plane and three out-of-plane
cases. Furthermore, the proposed approach has been implemented into
an ABAQUS plugin to streamline and automate the calculation process.
By making the source code publicly available to the community, we
anticipate that our efforts will contribute to offering a robust and user-
friendly approach for calculating the ABD matrix of woven composite
laminates. We also note that the method developed here, along with
our previously developed microscale RVE analysis approach and plugin
Viscoelastic RVE Calculator [29], provides an integrated multiscale ap-
proach to predict the overall stiffness behavior of thin woven composite

laminated structures.
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Fig. 1. Modeling framework of the two-step multiscale homogenization method for predicting the ABD matrix of woven composites.
The rest of the content is organized as follows: Section 2 describes
the Kirchhoff plate homogenization approach, which involves the con-
struction of mesoscale RVE models, the implementation of periodic
boundary conditions, and the application of loading conditions; Sec-
tion 3 provides a detailed description of the computation framework
and functionalities of AMWC; In Section 4, the accuracy and validity
of AMWC are demonstrated through several numerical examples in-
cluding 2D weave composites, 3D woven composites, and multiaxial
weave composites; and finally, Section 5 concludes with discussions
and conclusions.

2. Mesoscale RVE homogenization approach

2.1. Construction of mesoscale RVE

An optimal mesoscale RVE of the woven composite shall be the
smallest portion of the material that captures the essential mesoscale
structural characteristics such as the weave pattern, cross-section of
the yarn, undulation path of the yarn, matrix regions, interfaces, and
any other relevant features. It is essential to precisely capture the
weave pattern of the woven composite and the cross-sectional shape
of the yarn in order to generate an accurate mesoscale RVE model.
This is typically achieved using optical microscopy techniques [18,19].
Fig. 2 shows the construction of a mesoscale RVE for a two-ply plain
weave laminate as an example. The cross-section of the laminate was
examined by a Nikon optical microscope [18], and then the obtained
optical micrograph was imported into AutoCAD software to measure
the dimensions of the RVE, the cross-sectional shape of the yarn, and
the interlacing path of the yarns. The overall geometry of the meso-RVE
is characterized by its length 𝐿, width 𝑊 , and height 𝐻 , as well as
the gap size 𝑆 between adjacent warp yarns, and the gap size 𝑆
3

warp wef t
between adjacent weft yarns. The cross-section of the yarn is usually
assumed as an ideal ellipse shape with 𝑎 and 𝑏 denoting its major and
minor axis, respectively. The undulation of each yarn is determined by
altering the position of the control points (red dots in Fig. 2). Once the
geometric parameters of the RVE are obtained, the 3D geometry and
finite element mesh of the RVE can be generated using the open-source
software package TexGen [31], which will be used as input for analysis
within the proposed plugin AMWC.

Indeed, TexGen provides three types of commonly used meshing
options to generate RVE models for woven composites, namely, volume
mesh, voxel mesh, and dry mesh, each with distinct characteristics and
applications as shown in Fig. 3. The volume mesh option generates a
tetrahedral mesh that fills the entire volume of the textile composite,
i.e., it creates a mesh consisting of tetrahedral elements for both the
yarns and matrix, as the nodes are shared at the interface between
the yarns and matrix. This facilitates the modeling of the interaction
between the yarns and the matrix and allows for an accurate repre-
sentation of the composite geometry, however, in cases of complex
weave patterns it can be challenging to generate a perfect periodic
tetrahedral mesh. In such cases, the voxel mesh may be more suitable.
The voxel mesh option involves representing the RVE geometry using a
grid of voxels, where each voxel corresponds to a cuboid or rectangular
brick element. The advantage of this option is that it always generates
periodic meshes for the RVE, but the tradeoff is that it requires a large
number of elements to accurately represent complex weave patterns
which can be computationally intensive. The third meshing option is
dry mesh. This option creates a mesh of the yarns with cuboid or rectan-
gular brick elements by excluding the matrix materials. The interaction
between yarns within the dry mesh is modeled using cohesive contact
behavior in the finite element method.

The finite element mesh of the RVE models will be exported to
ABAQUS for calculation. Depending on the chosen mesh types and
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Fig. 2. Construction of a mesoscale RVE for woven composites. The weave pattern of the woven composite, the cross-sectional shape of the yarn, and the undulation path of the
yarn are determined with precision through the use of an optical micrograph. The images of the composite tape-spring hinge and the micrograph of the woven composite are
taken from Refs. [18,32], respectively.

Fig. 3. Three commonly used meshing types for mesoscale RVE of woven composites in TexGen. Volume mesh generates a tetrahedral mesh of both the yarns and matrix. Voxel
mesh generates a hexagonal mesh of both the yarns and matrix. Dry mesh generates a hexagonal mesh of only yarns.
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Fig. 4. Illustration of the finite element mesh of (a) RVE with MPC constraints on the side faces and (b) mid-plane schematic of a woven composite laminate.
material behaviors, different solution methods may be required when
using ABAQUS. For the volume mesh and voxel mesh, which represent
the matrix and yarns with shared nodes at the interface, the linear solu-
tion method (*Static, General in ABAQUS) is appropriate. This method
assumes linear-elastic material behavior and is suitable for problems
with small deformations and linear responses. On the other hand, for
the dry fiber mesh, where the nodes at yarn interfaces are not shared,
the general contact interaction function in ABAQUS is employed to
model the interaction between yarns. This method involves automatic
detection of contact pairs by ABAQUS contact algorithms, with the
adoption of cohesive behavior as a contact property to simulate the
separation and adhesion between adjacent yarns. Specifically, in the
definition of cohesive behavior, stiffness values are assigned between
the nodes in contact on the yarn surfaces to establish their association.
The determination of these stiffness values requires the adoption of a
cohesive traction-separation law, which defines the stress–displacement
relationship between the adhesive surfaces, as shown in Eq. (2).
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where 𝑡 and 𝛿 represent stress and separation displacement, respec-
tively. The subscript 𝑛 denotes the normal direction, while subscript
𝑠 and subscript 𝑡 represent the two transverse shear directions. The
parameter 𝑘𝑛𝑛 corresponds to the normal stiffness, while 𝑘𝑠𝑠 and 𝑘𝑡𝑡 cor-
respond to the shear stiffness in the two directions. Collectively, these
parameters are referred to as the uncoupled traction stiffness [33],
which characterizes the relationship between stress and separation
displacement in the cohesive interface. The default contact enforcement
method was taken in the simulations. It is important to note that
the cohesive contact behavior may lead to convergence issues with
the linear static analysis method. In such cases, the dynamic explicit
solver (*Explicit, Dynamic in ABAQUS) is often preferred, which is
well-suited for problems involving discontinuities. Before proceeding
with the analysis, it is essential to assign the material properties of the
yarns and matrix to their respective element sets in the mesh. In the
meantime, implementing periodic boundary conditions and applying
appropriate loading conditions allow us to investigate the response of
the RVE under specific loads. These aspects will be elaborated on in the
subsequent sections.
5

2.2. Implementation of periodic boundary conditions

Periodic boundary conditions are required to ensure the homoge-
nization of the properties of the yarns and matrix in the mesostructure.
For this study, we adopt the homogenized Kirchhoff plate theory pro-
posed by Kueh and Pellegrino [17], which has been proven effective in
accurately predicting the ABD matrix for woven composites [18,34]. As
illustrated in Fig. 4, the elemental nodes lying on the lateral surfaces
of the RVE are linked by means of rigid vertical beams (*MPC beam)
to reference points lying in the mid-plane, and each reference point
is related to the corresponding reference point at the opposite face
by means of a constraint equation that enforces periodic boundary
conditions. The equations that prescribe the relative displacements and
rotations of the opposing reference points are given as follows:
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where 𝑢, 𝑣, and 𝑤 denote the translational displacements of the ref-
erence point in the 𝑥-, 𝑦-, and 𝑧-direction, and 𝜃𝑥 and 𝜃𝑦 denote the
rotational displacements along the 𝑥- and 𝑦-direction, respectively. Su-
perscripts 𝑅𝑃𝐿

𝑗 , 𝑅𝑃𝑅
𝑗 , 𝑅𝑃 𝑇

𝑗 , and 𝑅𝑃𝐵
𝑗 represent the 𝑗th pair of reference

points on the left, right, top, and bottom side of the RVE, as indicated by
purple dots in Fig. 4(b). In practice, the degrees of freedom for each pair
of reference points are linked to the corresponding degrees of freedom
of a virtual node. Reference point pairs on the left and right lateral
surfaces are related to the virtual node CP-X, while those on the top and
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Fig. 5. Six specific cases of deformation for calculating all entries of the ABD matrix.
bottom surfaces are connected to the virtual node CP-Y. The specified
displacements or rotations are assigned to the two virtual nodes, and
the resulting forces or moments on the virtual nodes are computed as
the resultant forces or moments exerted on the surface.

2.3. ABD matrix calculation

Finally, the entries in the ABD matrix can be determined by solving
six specific loading cases, where for each case a constant strain vector
is applied to the homogenized RVE, and the resulting reaction forces
and moments are calculated. This process is illustrated in Fig. 5. For
instance, in loading case 1, which involves the tension deformation in
𝑥-direction, a constant tensile strain 𝜀𝑥 is applied while all other strains
are set to zero. By substituting 𝜀𝑥 ≠ 0, 𝜀𝑦 = 𝜀𝑥𝑦 = 𝜅𝑥 = 𝜅𝑦 = 𝜅𝑥𝑦 = 0 into
the Eq. (1), we can derive the first column entries of the ABD matrix
as follows:

𝐴11 =
𝑁𝑥
𝜀𝑥

, 𝐴12 =
𝑁𝑦

𝜀𝑥
, 𝐴16 =

𝑁𝑥𝑦

𝜀𝑥
, 𝐵11 =

𝑀𝑥
𝜀𝑥

, 𝐵12 =
𝑀𝑦

𝜀𝑥
, 𝐵16 =

𝑀𝑥𝑦

𝜀𝑥
(13)

where 𝜀𝑥 = 𝑢CP−X∕𝐿 is the prescribed strain, and 𝑁𝑥 = 𝐹𝐶𝑃−𝑋
𝑥 ∕𝑊 ,𝑁𝑦 =

𝐹𝐶𝑃−𝑌
𝑦 ∕𝐿,𝑁𝑥𝑦 = 𝐹𝐶𝑃−𝑋

𝑦 ∕𝑊 ,𝑀𝑥 = 𝑀𝐶𝑃−𝑋
𝑥 ∕𝑊 ,𝑀𝑦 = 𝑀𝐶𝑃−𝑌

𝑦 ∕𝐿,𝑀𝑥𝑦 =
𝑀𝐶𝑃−𝑋

𝑦 ∕𝑊 are the computed reaction forces/moments exerted on
the virtual nodes. The remaining entries in the ABD matrix can be
determined column by column by considering the other loading cases
as depicted in Fig. 5.

3. AMWC software implementation

This section presents the implementation details of the ABAQUS
plug-in AMWC. The aim of the plugin is to automate the process of
6

homogenization as described above, thus enabling accurate prediction
of the ABD matrix for woven composites. The plugin is implemented
using the Python programming language and can be easily installed
by placing the code package in the abaqus_plugins directory before
launching the software. Once installed successfully, the AMWC option
appears in the Plug-ins tab of the main menu bar in ABAQUS/CAE.

The GUI window of the AMWC plugin is illustrated in Fig. 6. To
start with, users are required to import the finite element mesh of
the meso-RVE from TexGen. Note that the imported mesh comes with
some default settings, including material parameters for the yarns and
the matrix, solver settings, constraint equations, boundary conditions,
etc, which all should be removed before using AMWC for calculation.
Thereafter, users are expected to provide the following parameters for
model specification. First of all, the mesh type of the meso-RVE and
the solver to be used for the analysis should be selected. Subsequently,
users are prompted to input the model name and part name for iden-
tification, which can conveniently be found in the model tree within
ABAQUS. Afterwards, the user needs to specify the number of yarns in
the 𝑥- and 𝑦-directions, as well as the number of layers. Fig. 7 illustrates
the default numbering system for different types of woven composites.
Please be aware that when dealing with 2D weave composites, all of
these numbers can be directly counted from the model. In the case of
3D woven composites, the number of yarns in 𝑥- and 𝑦-directions can be
counted, and the layer number should be set to 1. The finite elements
within the RVE are automatically categorized into three separate sets:
those representing the yarns in the 𝑥-direction, those representing the
yarns in the 𝑦-direction, and those associated with the matrix. Since
the yarns are treated as orthotropic materials, it is necessary to define
the material orientation in the simulation. The ‘‘1 direction’’ for the
longitudinal orientation will be aligned with the direction of the yarns
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Fig. 6. GUI window of the AMWC plug-in.
Fig. 7. Numbering scheme for different types of woven composite RVEs: (a) 2D Woven composite RVE; (b) 3D woven composite RVE; (c) 3D woven composite RVE with half-pick
yarns. Two of the half-picks at the lateral surface are considered as one when counting the number of yarns.
in their respective sets. On the other hand, the matrix is treated as
isotropic and does not require the specification of material orientation.
The material properties for the yarns and the matrix should be input
within the plugin interface. The density of the materials is also required
for the use of the Explicit solver.
7

Furthermore, tolerance is a key parameter that controls the imple-
mentation of periodic boundary conditions. As has been described in
Section 2, all nodes on lateral surfaces are extracted for the purpose
of implementing periodic boundary conditions. However, in practice,
elemental nodes may slightly deviate from the designated plane due to
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Fig. 8. Method for selecting nodes slightly deviated from the side surface of the RVE.
meshing errors, which can result in challenges when generating node
sets. The tolerance is defined by dividing the total length 𝐿, width 𝑊 ,
and height 𝐻 of the RVE by a constant integer value denoted as 𝑛𝑡𝑜𝑙.
Consequently, the tolerance is used to make a cuboid region, and all
nodes encompassed by the cuboid will be extracted to formulate the
relevant constraint equations, see Fig. 8 for details. It is important to
note that if the tolerance parameter 𝑛𝑡𝑜𝑙 is set to a large value, the tol-
erance is small and there might be issues with generating node sets due
to mapping errors, which stops further operations. Conversely, if 𝑛𝑡𝑜𝑙 is
set to a small value, there will be possibilities of linking more than two
nodes in each constraint equation, potentially resulting in undesired
over-constrained deformation. A default value of 250 is suggested for
most cases for the parameter 𝑛𝑡𝑜𝑙. However, its value can be adjusted
based on the specific needs of each individual case. In situations only by
adjusting the parameter 𝑛𝑡𝑜𝑙 does not yield satisfactory results, it might
be necessary to create a more refined RVE mesh.

Finally, the analysis employs an applied strain of 0.01 as default.
It should be clarified that in all simulations conducted using AMWC, a
linear elastic deformation assumption is made. As a result, the mag-
nitude of the applied strain does not change the calculation results
of the ABD matrix. Therefore, a small value of the applied strain is
recommended for saving computation costs. Once all of the above
parameters are specified, AMWC will automate the implementation
of periodic boundary conditions and the execution of the six specific
simulations, as described in Section 2, as soon as the ‘‘Apply’’ button is
clicked. After all the simulation jobs are done, AMWC automates a post-
processing procedure, and the resulting ABD matrix for the analyzed
meso-RVE will be saved in the ABAQUS work directory as a text file.
The use of the plug-in with step-by-step procedures for calculating the
ABD matrix of a 2D plain weave composite is presented as an example
in Video S1 in the Supporting Information.

4. Numerical examples

In this section, a series of numerical examples are solved by AMWC
and the results are compared with existing literature results to demon-
strate the accuracy of AMWC. These examples include 2D weave com-
posites, 3D woven composites, and multiaxial woven composites.

4.1. Plain weave composite

The first example features a double-layer plain weave composite
studied by Mallikarachchi [18]. We start by creating the meso-RVE
8

based on the geometric parameters as summarized in Table 1. It can
be seen that a minor inconsistency exists between the geometry of
the meso-RVE generated by TexGen and the model described in the
literature [18]. This difference arises from the limitations of TexGen
which prevent setting the gap size between adjacent yarns 𝑆 to zero.
Fig. 9 illustrates the RVE models generated in this study. All three types
of meshing are used for the ABD matrix calculation in this case to make
a comparison. The weave path of the yarn is defined by the coordinates
of a set of control points as shown in Fig. 9b. Table 2 presents the
material properties of the yarn and the matrix.

Table 3 presents a comparison between the results obtained us-
ing AMWC and the results reported in the literature [18], with the
matrix entries equal to zero not shown. It can be seen that all three
meshing types provide acceptable accuracy in predictions. Among these
methods, the volume and voxel meshing methods demonstrate superior
performance, showcasing more accurate results. Conversely, the dry
mesh approach exhibits the most significant deviations, particularly
in the tensile stiffness terms, which are mainly due to the setting of
the adhesive contact properties (as defined in Eq. (2)). The tangential
stiffness (𝑘𝑛𝑛, 𝑘𝑠𝑠 and 𝑘𝑡𝑡) in the adhesive contact properties is typically
determined through experimental testing [33], while in this study,
the default settings in ABAQUS were temporarily adopted. Fig. 10(b)
illustrates the strain distribution contour plots of the RVE (volume mesh
model) under six different boundary conditions.

Subsequently, we conducted a verification of the AWMC for calcu-
lating the ABD matrix of [±45] double-layer plain weave composite
materials. The material properties and internal geometric characteris-
tics of this composite material match those of the previously discussed
[0/90] double-layer plain weave composite precisely. In accordance
with the periodic arrangement of [±45] ply orientations, there exist
two distinct forms of RVE models, depicted in Fig. 11(a) and (b). It
is important to note that the RVE model for the [±45] lay-up is more
complex. Modeling employed Voxel mesh. The element size is set at
0.01980 × 0395980 × 002197, comprising a total of 500000 elements.
In Fig. 11, the resin part is omitted for clarity. Given the striking
similarity in the computational results of Model 1 and Model 2, Table 4
primarily displays the relative error between Model 2 and the results
from Ref. [18]. Considering the consistent use of homogenization tech-
niques, the minor discrepancies primarily originate from the differences
in RVE geometric dimensions as shown in Table 1.

4.2. Satin weave composite

The following example features a single-layer satin weave compos-
ite studied by Sankar and Marrey [35]. The geometry configuration
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Fig. 9. Illustration of the RVE model for a double-layer plain weave composite.
Fig. 10. Deformation of the meso-RVE with strain distribution for the six specific loading cases (Volume mesh).
Table 1
Geometric parameters for the meso-RVE of a double-layer plain weave composite.
RVE 𝐿 [mm] 𝑊 [mm] 𝐻 [mm] 𝑆 [mm] 𝑎 [mm] 𝑏 [mm] Section area [mm2]

This paper 2.8 2.8 0.219 0.068 0.666 0.0263 0.0589
Literature[18] 2.664 2.664 0.209 0 0.666 0.0262 0.0585
Table 2
Material properties for yarn and matrix.
Part 𝐸1 [MPa] 𝐸2 [MPa] 𝑣12 𝑣23 𝐺12 [MPa] 𝐺23 [MPa]

Yarn 159 520 11 660 0.267 0.472 3813 3961
Matrix 3390 3390 0.41 0.41 1210 1210
for the meso-RVE is shown in Fig. 12, and the associated geometric
parameters are summarized in Table 5. The material properties of
the yarn and matrix are outlined in Table 6. In this case, only the
volume meshing method was employed for the calculation. The results
9

presented in Table 7 mostly show good consistency, although notable
relative errors are observed in the D matrix’s bending stiffness terms.
Similar to example 4.1, the computational errors primarily originate
from differences in the RVE geometric models. However, the further



Composite Structures 337 (2024) 118031H. Jin et al.
Table 3
ABD Matrix for Double-Layer Plain Weave Composite: AWMC Calculations vs. Literature [18].
Model 𝐴11 [N/mm] 𝐴12 [N/mm] 𝐴22 [N/mm] 𝐴66 [N/mm]

Volume mesh RVE 13 244.45 1024.03 13 246.9 684.21
Voxel mesh RVE 12 548.36 1095.64 12 548.36 677.61
Dry mesh RVE 12 098.77 1374.97 12 492.62 595.91
RVE[18] 13 009 1085 13 009 667
Experiment[18] 12 833 ± 517 – – 785

Model 𝐷11 [Nmm] 𝐷12 [Nmm] 𝐷22 [Nmm] 𝐷66 [Nmm]

Volume mesh RVE 47.3 2.2 47.3 2.19
Voxel mesh RVE 41.05 1.93 41.05 1.94
Dry mesh RVE 40.09 1.47 40.98 1.56
RVE[18] 41.3 1.5 41.3 2.3
Experiment[18] 37.55 ± 5.54 – – –
Fig. 11. RVE modeling schematic of [±45] double-layer plain weave composite material: (a) Model 1 and (b) Model 2.
Table 4
ABD Matrix for [±45] double-Layer plain weave composite: AWMC Calculations vs. Literature [18].
Model 𝐴11 [N/mm] 𝐴12 [N/mm] 𝐴22 [N/mm] 𝐴66 [N/mm]

Model 1 7360.30 5998.55 7344.41 5516.71
Model 2 7360.63 5998.40 7344.17 5515.49
Literature [18] 7714 6380 7714 5962
Error 4.58% 5.98% 4.79% 7.48%

Model 𝐷11 [Nmm] 𝐷12 [Nmm] 𝐷22 [Nmm] 𝐷66 [Nmm]

Model 1 23.40 18.32 23.37 19.06
Model 2 23.41 18.33 23.37 19.00
Literature [18] 23.6 19.1 23.6 19.9
Error 0.81% 4.03% 0.97% 4.52%
amplification of these errors can be attributed to the combined effect
of two factors: the variance in yarn cross-sectional shape modeling
between the Texcad software used by Sanker [35] and the Texgen soft-
ware employed in our study, and the dimensional differences displayed
in Table 5.
10
4.3. 3D woven composite

The subsequent example highlights a 3D woven composite model
investigated by Liu et al. [30]. In this case, the accuracy of the ABD
matrix prediction is verified by simulating the response of a shell
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Fig. 12. Single layer 5-harness satin weave composite and RVE.
Table 5
Geometric parameters for the meso-RVE of a single-layer 5-harness satin weave composite.
RVE 𝐿 [mm] 𝑊 [mm] 𝐻 [mm] 𝑆 [mm] 𝑎 [mm] 𝑏 [mm] Section area [mm2]

This paper 7.5 7.5 0.2813 0.0445 0.157 0.705 0.0639
Literature [35] 7.055 7.055 0.2557 0 0.15386 0.705 0.0639
Table 6
Material properties for the yarns and matrix.
Part 𝐸1 [MPa] 𝐸2 [MPa] 𝑣12 𝑣23 𝐺12 [MPa] 𝐺23 [MPa]

Yarn 144 800 11 730 0.230 0.300 5520 4512
Matrix 3450 3450 0.35 0.35 1210 1210
Table 7
ABD Matrix for Single-Layer Satin Weave Composite: AWMC Calculations vs. Literature [35].
Model 𝐴11 [N/mm] 𝐴12 [N/mm] 𝐴22 [N/mm] 𝐴66 [N/mm]

Volume mesh RVE 14 309.3 1287.27 14 274.0 1159.72
RVE [35] 14 683 1351 14 683 1210
Error 2.55% 4.72% 2.79% 4.16%

Model 𝐵11 [N] 𝐵12 [N] 𝐵22 [N] 𝐵66 [N]

Volume mesh RVE 463.36 0 −461.76 0
RVE [35] 495 0 −495 0
Error 6.39% 0.00% 6.72% 0.00%

Model 𝐷11 [Nmm] 𝐷12 [Nmm] 𝐷22 [Nmm] 𝐷66 [Nmm]

Volume mesh RVE 78.96 2.15 78.37 6.16
RVE [35] 90.07 1.123 90.07 6.15
Error 12.33% 47.77% 12.98% 0.162%
structure and comparing the results with those obtained from a high-
resolution 3D model. The workflow for this analysis is depicted in
Fig. 13. To simulate the response of a plate composed of 3D woven
composites, two methods are typically employed. One method involves
directly discretizing the finite-sized structure with a huge number of
solid elements to generate a high-resolution 3D finite-element model,
which is referred to as the direct numerical simulation (DNS) method.
The other approach involves first homogenizing the properties of the
composites through meso-RVE analysis and then utilizing the ABD
matrix to simulate the response of the homogenized structure. The
DNS results serve as a benchmark for evaluating the accuracy of the
11
ABD matrix calculation. The model considered here is taken from the
literature [30], where the ABD matrix of a 3D woven composite was
calculated using a structural genome method, and a high-resolution 3D
model for the finite-sized structure was also established and solved for
validation purposes. As depicted in Fig. 13, the overall dimensions of
the finite-sized structure are 85.71 mm × 102.85 mm × 2.00 mm. A
mesoscale RVE is selected within this overall model based on periodic-
ity. The RVE has a spacing of 4.286 mm between warp and weft yarns,
a width of 3.428 mm, and a height of 0.286 mm. The bound yarn had a
width of 1.714 mm and a height of 0.286 mm. The material properties
of the yarns and the matrix are described in Table 8. The ABD matrix
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Fig. 13. Multiscale analysis workflow for 3D orthogonal woven composite plate structure.
Table 8
Material properties for the yarns and matrix for a 3D woven composite.
Part 𝐸1 [MPa] 𝐸2 [MPa] 𝑣12 𝑣23 𝐺12 [MPa] 𝐺23 [MPa]

Yarn 126 910 16 490 0.260 0.440 3720 3220
Matrix 4510 4510 0.38 0.38 1700 1700
predictions obtained using the AMWC method were compared with
the results predicted by MSG presented in literature [30], as shown in
Table 9. The table reveals that the ABD matrices calculated by both
methods are generally in good agreement, with the notable exception
of a significant discrepancy in the 𝐴12 component. Since both SG and
RVE employed identical finite element models (including geometric
parameters and mesh), this error is likely attributable to differences
between the RVE and MSG homogenization theories. Subsequently, the
ABD matrix is utilized to simulate the macroscopic response of the
finite-sized structure. One edge of the model was fully fixed, while
the other three edges were left free. A uniform pressure of 0.01 MPa
was applied to the upper surface in a downward direction. The nodal
displacements in 𝑧-direction along the plate edge red dashed line in
Fig. 13 were extracted to facilitate a comparison. The results obtained
from the high-resolution 3D model, computed using the ABD matrix
predicted by AWMC and the structural genome method are all pre-
sented in Fig. 14, demonstrating a high level of consistency across the
three sets of results.

4.4. Triaxial weave composite

This example showcases a single-layer triaxial weave composite as
studied by Kueh and Pellegrino [17]. As depicted in Fig. 15(a), the
triaxial weave employs yarns woven together at three different angles,
resulting in a distinctive fabric construction. The meso-RVE geometry
for this triaxial weave composite is defined by the parameters sum-
marized in Table 10. Kueh and Pellegrino employed beam elements to
12
Fig. 14. 𝑍-direction nodal displacements predicted by three methods.

approximate the yarns and constructed an RVE finite element model as
depicted in Fig. 16(b). While this approach significantly improves com-
putational efficiency, it may lead to the loss of some structural features
in the RVE. In this work, a 3D finite element model of the meso-RVE is
constructed, as depicted in Fig. 15(c). Furthermore, Table 11 provides
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Table 9
Comparison of ABD matrix calculation results.
Model 𝐴11 [N/mm] 𝐴12 [N/mm] 𝐴22 [N/mm] 𝐴66 [N/mm]

Voxel mesh RVE 47 536.5 6258.4 85 643.8 4938.9
MSG [30] 45 902.4 5581.3 80 702.0 4844.8
Error 3.55% 12.13% 6.12% 1.94%

Model 𝐷11 [Nmm] 𝐷12 [Nmm] 𝐷22 [Nmm] 𝐷66 [Nmm]

Volex mesh RVE 8319.6 1733.6 18 694.5 1413.1
MSG [30] 8144.7 1618.4 18 855.0 1429.5
Error 2.14% 7.12% 0.85% 1.15%
Table 10
Geometric parameters of meso-RVE for the triaxial weave composite.

Parameters 𝛥𝑙𝑥 𝛥𝑙𝑦 𝛥𝑙𝑧 𝑎 𝑏𝑖 𝑏𝑖𝑖 𝑏𝑖𝑖𝑖 𝑐 𝑑

Volume mesh RVE 3.12 5.4 0.039 2.7378 4.0524 2.0262 0.6754 0.803 0.078
Table 11
Material properties for the yarns in the triaxial weave composite.
Part 𝐸1 [MPa] 𝐸2 [MPa] 𝑣12 𝑣23 𝐺12 [MPa] 𝐺23 [MPa]

Yarn 157 650 13 280 0.256 0.300 4561 1745
Table 12
Comparison of ABD matrix calculation results.
Model 𝐴11 [N/mm] 𝐴12 [N/mm] 𝐴22 [N/mm] 𝐴66 [N/mm]

Volume mesh RVE 3016.06 1684.76 3042.87 679.18
Beam element RVE [17] 3411.10 2050.20 3411.00 680.42
Error 11.58% 17.82% 10.79% 0.182%
Experiment [17] 3106.9 ± 76 1552.66 3106.9 ± 76 777.12 ± 74

Model 𝐷11 [Nmm] 𝐷12 [Nmm] 𝐷22 [Nmm] 𝐷66 [Nmm]

Volume mesh RVE 2.24 0.54 2.21 0.47
Beam element RVE [17] 2.17 0.64 2.17 0.78
Error 3.22% 15.62% 1.84% 39.74%
Experiment [17] 2.077 ± 0.05 – 2.077 ± 0.05 –
Table 13
Material properties for the yarn and matrix.

Transversely isotropic yarn Isotropic resin

𝐸11 [MPa] 𝐸22 [MPa] 𝐺12 [MPa] 𝐺23 [MPa] 𝑣12 𝐸 [MPa] 𝑣

Plate 180 000 60 000 64 000 23 000 0.4 40 000 0.3
Shell 139 840 6400 3770 2360 0.22 3000 0.36
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the material properties for the yarns within the triaxial weave compos-
ite. It is important to note that, owing to the intricate nature of yarn
orientations within triaxial weave composites, the AMWC plug-in does
not currently offer an interface for calculating the ABD matrix for such
materials. Nevertheless, the analysis was conducted using the AMWC
code programs. Table 12 presents the calculation results alongside a
comparison with the results from the literature [17]. The results reveal
significant relative errors in several stiffness components, with the
beam model consistently yielding higher estimates. This discrepancy
largely stems from Kueh’s model treating yarn interactions as rigid Tie
connections. Consequently, AMWC’s predictions more closely resem-
ble experimental data, surpassing Kueh’s model. This improvement is
credited to the three-dimensional RVE finite element mesh used in this
study, offering a more precise representation of both the geometric
and contact characteristics of the RVE. Furthermore, this case study
demonstrates the AMWC program’s capability to accurately predict the
ABD matrix for a diverse range of woven composite materials.

4.5. Accuracy of shell element with ABD matrix

To validate the accuracy of the shell elements of the ABD matrix
calculated using AMWC, this study selected two cases. The first case
concerns a single-layer plain weave composite plate as depicted in
13

Fig. 17(a), employing a 1/4 symmetric model. The plate has dimensions b
of 128 mm in both length and width, with a thickness of 3.8 mm. The
yarns of the woven composite material have an elliptical cross-section,
with a major axis of 6.0 mm and a minor axis of 1.5 mm, and their
undulating path follows the pattern of 1.0sin(𝜋/8). Each Representative
Volume Element (RVE) measures 16 mm in length and width, and
3.8 mm in thickness, with the entire plate comprising 16 × 16 RVEs. In
he illustrated 1/4 symmetric model, one set of adjacent edges is fully
ixed, while the other set is subjected to symmetric boundary condi-
ions. The second case involves a single-layer plain weave composite
urved shell as shown in Fig. 17(b). Detailed geometric parameters of
oth the curved shell and the yarns are provided in the figure. The
VE dimensions for the curved shell are identical to those of the plate,
nd the entire shell comprises 16 RVEs. One side of the curved shell is
ully fixed, and a uniform pressure of 0.1 MPa is applied to the upper
urface. Material parameters for the yarns and resin used in the woven
omposite materials of both the plate and curved shell are listed in
able 13.

Three distinct approaches were employed to model and compute
he structures of the aforementioned plate and curved shell. The first
ethod involved the use of C3D8 solid elements in ABAQUS to dis-

retize the woven composite plate and curved shell structures as shown
n Fig. 17, thereby establishing a high-precision finite element model
or the direct solution of structural responses. The second approach,

ased on the embedded element method and the solid-shell concept
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Fig. 15. Triaxial weave composite and its RVE: (a) Single-layer triaxial woven composite material; (b) RVE with a beam element finite element model; (c) RVE with a solid
element finite element model.
Fig. 16. Deformation of the meso-RVE for a triaxial weave composite with strain distribution for the six specific loading cases.
proposed by Xu and M. Waas, integrates the structural and material
characteristics of the RVE into a single shell element [36]. This el-
ement, referred to hereafter as the S25 element, is suitable for the
analysis of planar and curved structures. Utilizing this element, finite
element models of the plate and curved shell were constructed, and
the structural responses were resolved. Detailed descriptions of these
two methods and the settings of the finite element models can be
found in the relevant literature [36]. The third approach, which is the
method of this paper, involves the creation of finite element models for
the plate and curved shell RVEs as depicted in Fig. 17 using Texgen.
The models utilized C3D10 elements with an average element size of
14
0.4 mm and total element counts of 160228 and 162221, respectively,
and underwent mesh independence verification. The ABD matrices
were calculated using AMWC, as presented in Table 14. In ABAQUS,
the finite element models shown in Fig. 16 were constructed using S4
shell elements with an element size of 3.2 mm and a total count of
400, also undergoing mesh independence verification. The macroscopic
responses of the structures were calculated using the Static, General
solver (*Nlgeom = ON) with the ABD matrices input from Table 14.

Fig. 18 illustrates the results of finite element analyses for woven
composite plate and curved shell structures using the three different
types of elements mentioned: C3D10 solid elements, S25 shell elements,
and S4 shell elements (AMWC). The deformation differences in the
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Fig. 17. Multiscale models of a single-layer plain weave composite material plate and shell structures. (a) Boundary conditions, geometric model, and the RVE-based homogenization
model of a composite material plate (1/4 symmetric model). One set of adjacent edges is fully fixed, while the other set is subject to symmetric boundary conditions, with a uniform
pressure of 1 MPa applied on the upper surface. (b) Boundary conditions and geometric model of a composite material curved shell, along with the RVE-based homogenization
model: one edge of the shell is fully fixed, and a uniform pressure of 0.1 MPa is applied on the upper surface.

Fig. 18. Comparison of the deformation in the thickness direction along red edge between FEA used three types of element, C3D10, S25 and S4: (a) Woven composite plate; (b)
Woven composite curved shell.
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Table 14
ABD matrix for the woven plate and shell.

𝐴11 [N/mm] 𝐴12 [N/mm] 𝐴22 [N/mm] 𝐴66 [N/mm] 𝐷11 [Nmm] 𝐷12[Nmm] 𝐷22[Nmm] 𝐷66[Nmm]

Plate 294 640 77 460 294 640 120 070 272 570 68 820 272 570 91 720
Shell 42 790 8740 42 790 6280 26 460 6240 26 460 5680
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thickness direction along the red-highlighted edges of the finite el-
ement models are compared. Fig. 18(a) depicts the variation of the
thickness direction displacement 𝑈𝑧 with respect to the 𝑥 coordinate
along the edge of the plate. From the graph, it can be observed that the
predictions of C3D10 solid elements, S25 shell elements, and S4 shell
elements (AMWC) are in good agreement. The maximum relative error
of S4 shell elements (AMWC) with respect to the two reference results
is 4.3%, occurring at 𝑥 = 64 mm. Fig. 18(b) presents the variation of 𝑈𝑦
long the 𝜃 coordinate along the edge of the curved shell. Similarly, the
imulation results of the three types of elements nearly overlap, with
4 shell elements (AMWC) closely approaching the response of C3D10
olid elements, with a maximum error occurring at 𝜃 = 30 degrees,
hich is only 1.13%.

. Conclusion

Woven composites exhibit excellent mechanical properties owing
o their rich micro-geometric features, making them highly valuable
or wide applications in aerospace, automobile, and civil engineering.
owever, predicting the ABD matrix of woven composites is challeng-

ng due to the complex heterogeneity. The classical laminate theory has
hown limitations in accurately predicting the ABD matrix for woven
omposites, particularly in cases where the calculation of bending stiff-
ess is concerned. On the other hand, the numerical homogenization
pproach has been proven as an effective method to predict the ABD
atrix for a wide range of woven composites. However, the process

f constructing the mesoscale RVE, accurately implementing the nec-
ssary periodic boundary conditions, and applying the specific loading
onditions remains intricate, which still hinders the widespread use of
he method.

To address this issue, this paper develops an ABAQUS plugin tool
amed ‘‘ABD Matrix of Woven Composite (AMWC)’’ that simplifies the
alculation procedures of the ABD matrix for woven composites. The
esoscale RVE of a woven composite could be generated using the

pen-source software TexGen. Afterwards, the finite element mesh of
he RVE is imported into ABAQUS. AWMC then automates the setup
f periodic boundary conditions, sequentially applies six predefined
oading conditions, and calculates the ABD matrix for the laminate as
he final output. All these features are achieved within a simple and
ser-friendly interface, eliminating the need for further programming
nd analysis by users, thereby saving time and effort and allowing users
o focus more on the design of woven composites. The efficiency of the
lugin tool was validated through a series of benchmark examples, in-
luding 2D woven composites, 3D woven composites, multiaxial woven
omposites, and curved shell structures of woven composites. In these
ase studies, the AMWC calculation results showed some degree of error
elative to the benchmark data. These errors can be attributed to two
ain factors: (1) minor inaccuracies in the RVE geometric model; and

2) differences in the homogenization theories. Although these errors
ave been demonstrated to be negligible in the macroscopic response
nalysis of simple structures, a precise quantitative study on the impact
f each stiffness component’s error on the structural response is still
eeded. This will guide further improvements in the predictive accu-
acy of AMWC. By making the source code of the plugin tool publicly
vailable to the community, we hope to provide an accessible and user-
riendly homogenization approach for predicting the ABD matrix of a
16

ide range of woven composites.
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