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Proper Orthogonal Decomposition

➢ Principal Component Analysis

➢ Purpose: Reduces the dimensionality of complex systems by extracting

dominant modes or features.

➢ Key Concept: Decomposes data into orthogonal basis functions that capture

the most significant patterns.

➢ Applications: Used in fluid dynamics, structural mechanics, and data-driven

modeling to simplify complex systems and reduce computational cost.

➢ Benefit: Preserves essential physics while enabling efficient analysis of large-

scale problems.
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Face Recognition Example 
• Each face image is treated as a 𝑚-dimensional

vector (flattening the 2D image into a 1D array

of pixel values).

• A dataset of 𝑛 face images forms a data matrix

of 𝐗𝑚×𝑛 where each column represents an

individual person.

➢ Face Image Representation 

n

2 3 n
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Face Recognition Example 

➢ POD Process

Covariance Matrix
C = X𝐗𝑇

Eigenvalue 
Decomposition

𝑚

𝑚 𝜉1 𝜉2 𝜉3 𝜉𝑚⋯

Eigenvectors𝛟 = 𝜉1, 𝜉2, ⋯ 𝜉𝑚

Eigenvalues𝜆 𝜆1 𝜆2 𝜆𝑚⋯

Eigenfaces

➢ POD analyzes the variance in the face image
dataset and identifies dominant patterns,
called eigenfaces, which capture the most
significant variations. These eigenfaces are
orthogonal and ranked by their corresponding
eigenvalues, representing their contribution to
the total variance. 4



Face Recognition Example 

➢ Dimensionality Reduction

𝐗 = 𝛟𝛟𝑻𝐗 ≈ ഥ𝛟ഥ𝛟𝑻𝐗 = ഥ𝛟෡𝐀

ⅇ 𝑙 = 1 −
𝛴𝑗=1
𝑙 𝜆𝑗

𝛴𝑗=1
𝑚 𝜆𝑗

< 0.01

෡𝐀 = ഥ𝛟𝑻𝐗

The full data matrix 𝐗 is 𝑚 × 𝑛, where 𝑚 is the number of features and 𝑛 is the number of 
data points (or people).

෡𝐗 = ഥ𝛟෡𝐀

where 𝛟𝑚×𝑚 = 𝜉1, 𝜉2, ⋯ 𝜉𝑚 is the POD basis consisting of eigenvectors (eigenfaces). By
truncating the POD basis to the first 𝑙 modes, we get the truncated POD basis ഥ𝛟𝑚×𝑙 =
𝜉1, 𝜉2, ⋯ 𝜉𝑙 .

The truncated error ⅇ(𝑙) quantifies the loss of information when using only the first 𝑙
eigenfaces. It is given by:

The reduced data matrix ෡𝐀𝑙×𝒏 is obtained by projecting 𝐗 onto the truncated POD basis:

The reconstructed data matrix ෡𝐗𝑚×𝑛 is obtained by multiplying the truncated POD basis
with the reduced data matrix:
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Face Recognition Example 

➢ Dimensionality Reduction

Data matrix
𝐗𝑚×𝑛

Reduced data matrix
෡𝐀𝑙×𝑛

Reconstructed
Data matrix

෡𝑿m×𝑛𝐗 = 𝛟𝛟𝑻𝐗 ≈ ഥ𝛟ഥ𝛟𝑻𝐗 = ഥ𝛟෡𝐀

(ഥ𝛟)(Truncated) POD Basis: 𝛟

• By applying POD, the dimensionality of an individual's feature vector is reduced from 𝑚

(original pixel values) to 𝑙 (the number of retained eigenfaces).

• The face is no longer represented by pixel values but as a linear combination of the first 𝑙

eigenfaces, which capture the most significant variations in the dataset.

• This reduced representation retains the key features of the face while discarding less

important details, simplifying both the computational complexity and the face recognition

process. 6



Face Recognition Example 

➢ Face Recognition

The test image is converted into a small-dimensional coefficient vector by projecting it onto a set 
of orthogonal basis vectors derived from the dataset. This reduced representation, is then 
compared to the stored reduced coefficient vectors in the dataset for recognition.

Input image dataset Test images

Reduced image dataset

POD

Matching

POD

Matching
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POD in fluid dynamics

AIAA journal, 2020, 58(3): 998-1022. 8



POD methods

෡𝐗𝑚×𝑛

෡𝐀𝑙×𝑛=

𝐂𝑚×𝑚𝐗m×𝑛

C = 𝐗𝐗𝑇
Eigenvalue 

Decomposition

𝚽𝑚×𝑚
ഥ𝚽𝑚×𝑙

Truncated 
POD basis

POD basis

ഥ𝚽𝑚×𝑙Full data matrix
Reduced data matrix

Truncated 
POD basis

Think about m>n

The rank of the covariance matrix C is
limited to min(m, n), and the number of
non-zero eigenvalues is also constrained to
min(m, n). The eigenvectors corresponding
to these non-zero eigenvalues define the
principal components.
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➢Eigenvalue decomposition of covariance matrix

⚫ Process     

1. Compute the covariance matrix of the data.

2. Calculate eigenvalues and eigenvectors of the covariance matrix.

3. Sort eigenvectors by eigenvalues in descending order.

4. Project the data onto the selected eigenvectors to reduce dimensionality. 



POD methods
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➢Singular Value Decomposition (SVD)

Given a matrix X, the Singular Value Decomposition (SVD) is a factorization of the matrix 

into three components:

𝐗 = 𝐔𝚺𝐕𝑇

Where:

⚫ 𝐗 is an 𝑚 × 𝑛 matrix (in your case, with 𝑚 features and 𝑛 cases/observations),

⚫ 𝐔 is an 𝑚 ×𝑚 orthogonal matrix whose columns are the left singular vectors of X,

⚫ 𝚺 is an m x n diagonal matrix (with non-negative real numbers on the diagonal), 

containing the singular values of X

⚫ 𝐕𝑇 is an n x n orthogonal matrix whose rows are the right singular vectors of X.



POD methods

➢Understanding the Components

1. Left Singular Vectors (U):

• The columns of 𝐔 are the eigenvectors of X𝐗𝑇, and the columns of 𝐔 can be

interpreted as the POD basis functions that are orthogonal to each other and

capture the most significant modes or directions of variability in the data.

2. Right Singular Vectors (V):

• The rows of 𝐕𝑇 (i.e., the columns of 𝐕) are the eigenvectors of 𝐗𝑇X.

• The X𝐗𝑇 and 𝐗𝑇X have the same non-zero eigenvalues and they are related to the 

singular values of 𝐗.

3. Singular Values (𝚺):

• The matrix 𝚺 is diagonal with the singular values 𝜎1, 𝜎2,…, 𝜎𝑟 ​ on its diagonal, and 

the number of singular values 𝑟 is equal to min(𝑚, 𝑛).

• The singular values 𝜎𝑖 are the square roots of the non-zero eigenvalues 𝜆𝑖 ​of X𝐗𝑇or 

𝐗𝑇X.
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Data matrix
𝐗𝑚×𝑛

POD methods

➢Singular Value Decomposition (SVD)

=
Singular Values

𝚺𝑚×𝑛

Right Singular Vectors
𝐕𝑛×𝑛
𝑇

𝟎

𝟎

𝟎

If 𝑚 < 𝑛:

Left Singular 
Vectors
𝐔𝑚×𝑚

ഥ𝚽𝑚×𝑙

ഥ𝚺𝑙×𝑙 ഥ𝐕𝑙×𝑛
𝑇
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Data matrix
𝐗𝑚×𝑛

POD methods

➢Singular Value Decomposition (SVD)

=
Singular 
Values
𝚺𝑚×𝑛

𝟎

𝟎

𝟎

If 𝑚 > 𝑛:

Left Singular Vectors
𝐔𝑚×𝑚

ഥ𝚽𝑚×𝑙

ഥ𝚺𝑙×𝑙
ഥ𝐕𝑙×𝑛
𝑇

Right Singular 
Vectors
𝐕𝑛×𝑛
𝑇

෡𝐀 = ഥ𝚺𝒍×𝑙ഥ𝐕𝑙×𝑛
𝑇
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POD methods

➢SVD vs PCA

𝐗 = 𝐔𝚺𝐕𝑇 𝐗𝐗𝑇𝐔 = 𝐔𝚲

𝐗𝐗𝑇𝐔 = 𝐔𝚺𝐕𝑇𝐕𝚺𝑇𝐔𝑇𝐔 = 𝐔𝚺𝚺𝑇 = 𝐔𝚲 ∴ 𝚺𝚺𝑇 = 𝚲

1)

𝐗 = 𝐔𝚺𝐕𝑇 𝐗𝑇𝐗𝐕 = 𝐕𝚲

𝐗𝑇𝐗𝐕 = 𝐕𝚺𝑇𝐔𝑇𝐔𝚺𝐕𝑇𝐕 = 𝐕𝚺𝑇𝚺 = 𝐕𝚲 ∴ 𝚺𝑇𝚺 = 𝚲

2)
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Example

https://github.com/Dr-Ning-An/FEM_Course/blob/main/POD_Example/SVD_POD_reduction.ipynb

https://github.com/Dr-Ning-An/FEM_Course/blob/main/POD_Example/SVD_POD_reduction.ipynb
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Example
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Example
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Example
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