
September 28, 2020 12:59 MPLB S0217984921500330 page 1

Modern Physics Letters B

2150033 (6 pages)
© World Scientific Publishing Company

DOI: 10.1142/S0217984921500330

A predictive deep-learning approach for homogenization of auxetic

kirigami metamaterials with randomly oriented cuts

Tongwei Liu, Shanwen Sun, Hang Liu, Ning An and Jinxiong Zhou∗

State Key Laboratory for Strength and Vibration of Mechanical Structures,

Shaanxi Engineering Laboratory for Vibration Control of Aerospace Structures,
School of Aerospace, Xi’an Jiaotong University, Xi’an 710049, P. R. China

∗jxzhouxx@mail.xjtu.edu.cn

Received 16 June 2020
Revised 23 July 2020

Accepted 24 July 2020
Published 28 September 2020

This paper describes a data-driven approach to predict mechanical properties of auxetic
kirigami metamaterials with randomly oriented cuts. The finite element method (FEM)
was used to generate datasets, the convolutional neural network (CNN) was introduced

to train these data, and an implicit mapping between the input orientations of cuts and
the output Young’s modulus and Poisson’s ratio of the kirigami sheets was established.
With this input–output relationship in hand, a quick estimation of auxetic behavior of

kirigami metamaterials is straightforward. Our examples indicate that if the distributions
of training and test datasets are close to each other, a good prediction is achievable.
Our efforts provide a fast and reliable way to evaluate the homogenized properties of

mechanical metamaterials with various microstructures, and thus accelerate the design
of mechanical metamaterials for diverse applications.
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1. Introduction

Metamaterials are man-made materials that exhibit unusual or exceptional proper-

ties originating from arrangement of unit cells rather than their chemical composi-

tion. Metamaterials have been evolved from magnetic, optical, thermal, acoustic, to

more recent nonlinear and mechanical metamaterials, whose behaviors are dictated

by deformation, stress and motion.1–3 As one of the unique types of mechanical

metamaterials, kirigami metamaterials have attracted increasing attention recently
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because of their ease of manufacturing by cutting and folding, yet achieving unprece-

dented properties such as auxeticity, large stretchability, tunable surface friction,

shape-morphing and programmable pattern formation.4–8

Thus far, the vast majority of kirigami metamaterials explored have periodic

cuts. Kirigami metamaterials with regular and periodic cuts have a few degrees of

freedoms, and their mechanical behavior can be captured by studying a unit cell and

imposing periodic boundary conditions. Nevertheless, more exciting applications of

kirigami metamaterials with non-periodic or random cuts result in kirigami sheets

with more design variables and larger design dimensions. One intriguing application

of kirigami sheets with random or non-periodic cuts is the shape-morphing or shape

matching kirigami, a topic addressed very recently.9–11 Designing cut patterns of a

sheet and ensuring that the sheet deform or deploy from two-dimensional (2D) plane

to any prescribed 3D surface set in the core of these shape-morphing structures

design. Augmented design variables are needed for this sophisticated problem and

the resultant kirigami design is definitely non-periodic or random.9–11

A quick estimation of mechanical properties of kirigami metamaterials with ran-

dom cuts would accelerate design of these shape-morphing kirigami. In this aspect,

help is resorted to homogenization, a concept and methodology widely used to in-

vestigate the behaviors of materials with various microstructures. Homogenization

of kirigami sheets with random cuts was studied experimentally and numerically

by Grima et al.12 They constructed a class of perforated systems having randomly

oriented cuts and investigated how Poisson’s ratio and modulus of such systems are

affected by randomness or disorder in cut orientation. From Grima’s experimental

results, the mean values of Poisson’s ratio as well as modulus are biased and increase

monotonically as order of randomness of cut orientations increased from dmax =

0◦ to dmax = 25◦, where dmax denotes the maximum magnitude of rotation for a

particular system. We speculate that this arises from limited test data. An in-depth

investigation of homogenization of this kirigami metamaterials is thus needed for

better understanding of its mechanical behavior.

Conventional way of homogenization of materials with complex microstructures

is implemented by choosing a representative unit cell, prescribing periodic bound-

ary conditions, and then performing numerical simulations. Equivalent properties

of the same unit are calculated by omitting detailed microstructures. When the

parameters of microstructures vary, the whole simulation process repeats until the

homogenized properties are obtained. This conventional process of homogeniza-

tion is tedious and time-consuming. It is appealing to develop a quick and reliable

way for homogenization of materials with complicated microstructures. Here, we

describe a deep-learning approach for prediction of mechanical properties of aux-

etic kirigami metamaterials with randomly oriented cuts. The convolutional neural

network (CNN) was adopted for data training and validation, and the datasets

were generated by using finite element method. Our results indicate that the deep-

learning algorithm can be used as a reliable and accurate method for quick pre-

diction of auxetic kirigami metamaterials, in particularly when both the training
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datasets and the test datasets are randomly distributed but fall into similar distri-

butions. Analogous deep-learning approaches have been used to evaluate properties

of mechanical metamaterials, but not to kirigami metamaterials.13–16

2. Data Generation and Deep-learning Algorithm

Figure 1 shows the unit cell of a kirigami material sheet considered in this paper.

The unit cell shown in Fig. 1(a) is a 1.21 mm × 1.21 mm square with periodic bound-

ary conditions enforced, while the unit cell shown in Fig. 1(b) is a 3.63 mm × 3.63

mm square. The kirigami cuts considered in this paper are rectangle-shaped slits

with dimensions 1 mm × 0.01 mm. The dimensions of all slits are fixed in simulation

but the orientations vary randomly. Figure 1(a) contains a unit cell of cuts with

four random orientations, denoted by θ1, θ2, θ3, θ4, while Fig. 1(b) gives another

case with total 36 random cuts whose orientations are marked by θ1, θ2,. . . ,θ36.

The materials used here are assumed to be linear isotropic with Young’s modulus

3.2 MPa and Poisson’s ratio 0.49. The commercial software, ABAQUS/Standard, is

used for FEM simulation. Plane stress element (CPS3) was used and the unit cells

in Figs. 1(a) and 1(b) were discretized by 1350 and 12,130 elements, respectively.

To model the random cuts in Fig. 1, a Python code was programmed to construct

the model and the orientation of each slit was set randomly. Intersection of any

two slits is avoided. To prepare the datasets for the following CNN training and

prediction, all together 10,000 FEM simulations were carried out. Among them,

8000 datasets were chosen for training and the remain 2000 datasets were used for

test.

Figure 2 depicts the CNN algorithm for this study. The CNN model consists of

two convolutional (CONV) layers and three fully connected (FC) layers. Using the

model in Fig. 1(b) as a typical example, orientations of 36 random cuts are chosen

as input data to the CNN, and the homogenized Young’s modulus and Poisson’s

ratio are obtained as output data. Convolution of the input data is performed in

the CONV layers, and features of the input data are extracted to form feature

maps, which are then mapped to the output data by the FC layers. The CONV

layers 1 and 2 have 16 and 32 filters, respectively. The FC layers 1, 2 and 3 include

512, 64 and 2 neurons, respectively. Rectified Linear Unit (ReLU) was adopted as

the activation functions in all CONV layers and FC layers 1 and 2 as indicated in

Fig. 2. We train the network using the Adam optimizer.

3. Result and Discussions

Regarding the material used for simulation (rubber with modulus 3.2 MPa taken

from Ref. 12), the porosity of cuts (2.7%), and the randomness of orientation

(±25◦), all the simulated data for Poisson’s ratio falls into range [−0.867, −0.744]

with mean value −0.812 and standard deviation 0.016, while the calculated moduli

are in the range [0.106 MPa, 0.17 MPa] with mean value 0.13 MPa and standard

deviation 8.5 × 10−3 Mpa.
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Fig. 1. (Color online) The unit cell FEM model of auxetic kirigami metamaterials sheet with
randomly oriented cuts. All the cuts are rectangle-shaped with fixed length 1 mm and width 0.01
mm, while the orientation of each cut is random in the range −25◦ –25◦. (a) A 1.21 mm × 1.21

mm square unit cell contains four random cuts. (b) A 3.63 mm × 3.63 mm square unit cell with
36 random cuts.

Fig. 2. The CNN model used for mechanical properties prediction of a kirigami metamaterial.
The orientations of the random cuts are chosen as input variables (using the model in Fig. 1(b)

as an example) and Young’s modulus and Poisson’s ratio are estimated as output variables.

Figure 3(a) plots the convergence history during the training and learning pro-

cess. The black curve shows the convergence of Young’s modulus, while the red line

is the history of Poisson’s ratio. In Fig. 3(a), the average error is defined as the

deviation between the predicted value and the simulation value. Figures 3(b) and

3(c) plot the comparison of calculated (vertical axis) and predicted (horizontal axis)

Poisson’s ratios and Young’s modulus, respectively. The red lines in Figs. 3(b) and

3(c) denote the straight line, y = x, and an excellent prediction is achieved when

all data points collapse into the straight line. The results of Fig. 3 are obtained

when the distributions of the training and test datasets coincide, i.e. all in [−0.867,

−0.744] for Poisson’s ratio and [0.106 MPa, 0.17 MPa] for Young’s modulus.
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Fig. 3. (Color online) The convergence history (a) and performance of prediction of Poisson’s
ratio (b) and Young’s modulus (c) of a kirigami metamaterial unit cell with four randomly oriented

cuts. The straight red lines in (b) and (c) imply that the predicted values coincide with the unseen

test data. Collapsing of the points into the near neighborhood of the straight line demonstrates
excellent prediction capability of the proposed approach.

Fig. 4. (Color online) Convergence history and prediction of the model in Fig. 1(b) with 36
random cuts. The same distributions training and test datasets were utilized.

Figure 4 presents the similar results when the unit cell considered is that in

Fig. 1(b) and the number of random cuts is increased to 36. The overall trend in

Fig. 4 is the same as that in Fig. 3, but the calculated versus the predicted data

deviate more or less from the linear red line, as shown in Figs. 4(b) and 4(c). This

implies that for the simple standard CNN algorithm adopted here, it is possible

that more datasets are needed to improved the performance of CNN. Figures 3 and

4 demonstrate that good prediction of CNN for mechanical properties of kirigami

metamaterials is attained when the distributions of both training and test data fall

into the similar distribution.

4. Summary

We describe a predictive deep-learning approach for fast and reliable homogeniza-

tion of auxetic kirigami metamaterials with randomly oriented cuts. The datasets

for training and test were generated by using finite element simulations. The CNN

was adopted as the deep-learning algorithm. The orientations of random cuts were

used as input variables, while the homogenized Young’s modulus and Poisson’s ratio

were chosen as output variables, and an implicit mapping between input and output

was obtained. With this input–output relationship in hand, a fast prediction of me-

chanical properties of kirigami metamaterials is straightforward and the accuracy
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is checked by comparing predicted data with unseen test data. Good prediction of

CNN is guaranteed when the training and test datasets fall into similar range of

distribution.
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