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a b s t r a c t 

This paper presents an automatic finite element simulation scheme accounting for high geometric nonlinearity 

and the difference between linear and nonlinear buckling of composite thin-walled lenticular tubes (CTLTs). 

Parameterizing of cross-section shapes and generation of design space for CTLTs with both circular and parabolic 

arcs were accomplished, and several key factors were identified, in particular the contrary effect of lumbus length 

and parabolic coefficient on the bending stiffness anisotropy. The first quantitative comparison of triangular 

rollable and collapsible (TRAC) booms and CTLTs is given in terms of bending performance in two directions, 

showing that the optimal CTLT carefully selected from the design space demonstrates a comparable or even better 

performance than the TRAC boom. This is of great importance from both academic and engineering perspectives. 

Our efforts enhance the understanding of nonlinear buckling and post-buckling behavior of CTLTs, and provide 

guidelines for future design of CTLTs with desirable performance. 
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. Introduction 

The composite thin-walled lenticular tube (CTLT), which is also

nown as the collapsible tube mast (CTM), is a closed tube with lentic-

lar cross-section that can be commonly used for deploying large struc-

ures in space. The CTLT is flattened and coiled for storage before and

uring launch, and capable of deploying spontaneously for use once in

rbit. This type of structure, since was first introduced by NASA a few

ecades ago [1] , has been developed and employed as a basic compo-

ent to deploy various large space structures, such as solar arrays and

ntennas in many space missions. The first CTM ever used in space was

ointly developed by NASA and ESA for the ULYSSES mission [2] . The

evelopment of CTLT is also considered as a key technique of German

erospace Center DLR’s solar sailing technology [3–6] , and in 2009 an

greement was made between ESA and DLR by which they started a

hree-step project aiming to develop, prove, and demonstrate that CTLT

an serve as a safe and reliable component for long-lasting and deep

pace missions [7,8] . NASA has also recently expressed an interest in

mall CTLTs as a candidate solar sail boom for low-cost deep space ex-

loration and science missions [9–14] . As an example of commercial ap-

lication, Oxford Space Systems Ltd (OSS) in UK, is currently developing

 2.7-m-diameter wrapped-rib antenna where 48 CTLTs are employed

s wrapping ribs to deploy the metal mesh reflector surface [15–17] . 
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The CTLT may be subjected to various kinds of mechanical loads dur-

ng different stages of its working process such as flattening, coiling and

eploying, and as a slender thin-walled structure it could demonstrate

 complex and nonlinear behavior. A large number of fundamental re-

earch has been carried out to study the flattening and wrapping process

f CTLTs. Hu et al. [18] performed a combined experimental, numerical,

nd analytical investigation of the mechanical response of both com-

ressive and tensile flattening deformations of deployable CTLTs. Chen

t al. [19] carried out some experiments to test the large deformation

ehaviors of CTLTs in flattening and wrapping process and developed

hree-dimensional finite element models to predict the mechanical char-

cteristics identified by experiments. Similar studies were also reported

y Bai et al. [20–22] for determining tensile, compression and folding

ehaviors of CTLTs. The above-mentioned efforts have been focused on

he deformation and the associated failure during flattening and folding,

nd localized buckling that occurs during flattening and folding was ob-

erved as the dominant failure mode of deployable CTLTs [23,24] . How-

ver, little attention was paid to study the instability or buckling behav-

or of CTLTs. The only relevant work that we are aware of focused on the

inear buckling and nonlinear post-buckling response of the CTLT sub-

ected to uniaxial compression [25] . It was found that the critical buck-

ing load estimated directly by eigenvalue analysis is far greater than

he realistic experimental measurement. A closer critical buckling load

as eventually obtained by introducing proper initial imperfections and

erforming a post-buckling analysis. However, the initial imperfections

ntroduced in the post-buckling analysis were determined from the ex-

erimental observations and this may reduce the predictive significance

f the model [26] . Therefore, reliable simulation techniques need to be
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eveloped to accurately predict the critical buckling load of CTLTs prior

o conducting experiments [27] . 

A more accurate prediction of the critical buckling load can be ob-

ained by first performing a geometrically nonlinear response analysis

nd then estimating the buckling load by a following eigenvalue anal-

sis on the deformed configuration. This method is referred to as the

onlinear buckling analysis, and it has been well-developed and docu-

ented, and successfully applied in the field of mechanical engineer-

ng in the past few decades. A number of analytical solutions can be

ound for the nonlinear buckling predictions of simple structures such

s beam, truss, and shell problems with ideal boundary conditions. Bren-

el et al. [28] formulated the eigenvalue problem with the information

t deformed states on the nonlinear pre-buckling path and studied the

ffect of imperfections on the critial loads of several cylindrical shells un-

er uniform pressure and wind load. Kounadis et al. [29] proposed a sim-

lified approach for the nonlinear buckling analysis of frames subjected

o either bifurcational or limit-point instability. Wu et al. [30,31] de-

ived the design derivatives of the nonlinear critical load and proposed

n optimization procedure to maximize the load-carrying capacity of

russ-structures. For complex systems, analytical solutions are rarely ob-

ainable and numerical modelling is often required. Lindgaard et al. [32–

5] developed a combination of numerical approach and optimization

rocedure to maximize the critical nonlinear buckling load of laminated

omposite shell structures and provided validation with several bench-

ark problems. Nguyen et al. [36] formulated a finite element model

sing three-noded Timoshenko beam elements to analyze the nonlinear

uckling load of an inflatable beam made of orthotropic technical tex-

iles. Liang et al. [37,38] proposed a reduced order model that capable

f predicting the nonlinear buckling behavior of variable stiffness com-

osite plates efficiently compared with typical full order finite element

odel. 

Structural instability arises as one of the biggest concerns for struc-

ural design of thin-wall composite boom structures such as CTLTs in

erospace engineering, because these structures are usually thin in thick-

ess and have long aspect ratio. TRAC (triangular rollable and col-

apsible) booms and CTLTs have been considered promising (compet-

tive) candidates for solutions of various light-weight deployable struc-

ures [39–41] . Very recently a few studies have been carried out to un-

erstand the nonlinear buckling behavior of TRAC booms subjected to

ure bending. Murphey et al. [42] analyzed the basic structural me-

hanics including deployment stiffness, buckling strength, and pack-

ging constraints of TRAC booms using closed form analytical and fi-

ite element approaches. Leclerc et al. [43] performed a study of the

onlinear elastic buckling behavior of triangular rollable and collapsi-

le (TRAC) booms under pure bending and reported a good agreement

etween numerical predictions and experimental measurements. Bessa

t al. [44] constructed the design space diagram for the TRAC booms and

roposed a data-driven computational framework combining Bayesian

egression for optimizing the nonlinear critical buckling load of TRAC

ooms. Despite the available study on instability of TRAC booms and

TLTs, either numerical or experimental, reliable prediction of critical

oads with emphasis on variation of configuration and initial stress field

n the context of nonlinear buckling analysis remains elusive. A recent

tudy on TRAC booms reveals the subtle difference between classical

inear buckling analysis and nonlinear buckling, and the linear buckling

ay give biased estimation on critical loads [45,46] . But this has never

een carried out for CTLTs. Moreover, due to the unique cross-section

hape of CTLT, it exhibits strong bending stiffness anisotropy [47–50] ,

nd thus a rational design of CTLT is only achievable provided an accu-

ate design space diagram is available, and a trade-off is made by com-

romising bending performance in different directions. Another benefit

f generating and exploiting through a design space is the possibility

f unveiling some key design parameters which might be missed oth-

rwise. Last but not least, the obtained design space and exploration

ermits parameter tailoring for optimal designs, and more importantly,

llows a possible quantitative comparison of the two counterparts, TRAC

ooms and CTLTs. 
2 
In this paper, we develop a finite element method based numerical

cheme that predicts the nonlinear buckling and post-buckling behavior

f CTLTs under pure bending. We first study the mechanical response of

 particular CTLT bent along two perpendicular directions, and demon-

trate the validity of the developed analysis methods. A good agreement

as obtained between the predictions of critical buckling load extracted

y the nonlinear buckling analysis and that identified from the post-

uckling response. We then perform a systematic numerical study to

onstruct the design space against nonlinear buckling for a variety of

TLTs with equal weight but different cross-section shapes. The cross-

ection shape is shown to be a convenient parameter for controlling the

re-buckling stiffness and the nonlinear critical buckling load of CTLTs.

ore specifically, we start by investigating the effect of the size of

eb and lumbus on the bending resistance performance of conventional

TLTs with circular arcs. We then introduce the concept of parabolic

TLTs by replacing the conventional circular arcs with parabolas, and

how how it is possible, by just tuning the parabolic shape, to alter

he range of attainable mechanical responses and leverage the trade-

ff between the bending resistance performance in the two directions.

inally, we made a comparison of the bending performance between

onventional circular CTLTs, parabolic CTLTs and TRAC booms with

qual weight. It is shown that the optimal CTLT carefully selected from

he design space demonstrates a comparable or even better performance

han TRAC boom loaded concurrently in two loading directions. 

The paper is organized as follows. Section 2 describes the geometry

esign of the traditional CTLTs with circular arcs. Section 3 introduces

he numerical analysis techniques that are used to investigate the non-

inear buckling and post-buckling response of CTLTs. Section 4 presents

he results obtained from parametric studies, highlighting the effect of

ross-section shape on the nonlinear mechanical response of CTLTs. Fi-

ally, concluding remarks are included in Section 5 . 

. CTLT Geometry 

Fig. 1 shows a schematic of the conventional CTLT with circular arcs.

his type of structure consists of joining two thin omega-shaped cylin-

rical shells of thickness 𝑡 . The cross-section of each omega-shaped shell

onsists of four circular arcs of radius 𝑅 subtending an angle 60 ◦, two

traight segments at the ends of width 𝑤 constituting the web, and one

traight segment called lumbus of length 𝐿 at center [51] . The two shells

re mirror-symmetric and the end flat parts are bonded together in the

nstressed configuration. The geometry of the CTLT is then fully charac-

erized by the longitudinal length 𝑙, thin-shell thickness 𝑡 , and the cross-

ection parameters: web width 𝑤 , lumbus length 𝐿 , and circular arc

adius 𝑅 . In order to make a fair comparison between the performance

f CTLTs with different cross-section geometries and TRAC booms, the

ongitudinal length 𝑙, thin-shell thickness 𝑡 , and the flattening length of

he cross-section 𝑠 are set the same as those of TRAC booms reported

n literature [43,44] , i.e., 𝑙 = 504 mm, 𝑡 = 0 . 071 mm and 𝑠 = 27 . 43 mm.

inally, the flattening length of the cross-section 𝑠 , which can be ex-

ressed as 𝑠 = 2 𝑤 + 𝐿 + 

4 
3 𝜋𝑅 , is fixed constant, and therefore the mass

f the structure remains unchanged. The web width 𝑤 and the lumbus

ength 𝐿 are selected as two independent variables that are used to ad-

ust the cross-section geometry of circular CTLTs. 

. Finite element analyses 

In this section, we will detail the finite element analyses that are

sed to investigate the nonlinear buckling and post-buckling behavior

f CTLTs subjected to pure bending. First, we will introduce the finite

lement model with the definition of boundary conditions and material

roperties (see Section 3.1 ). Then, we will focus on the analyses to pre-

ict the critical loads for the onset of buckling and the associated buck-

ing modes (see Section 3.2 ). Finally, we will discuss the post-buckling

esponse analysis (see Section 3.3 ). 
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Fig. 1. Schematic of the CTLT with circular arcs. (a) A CTLT in the deployed, i.e., unstressed configuration. (b) Cross-section of the CTLT with geometric parameters 

indicated. Web width 𝑤 and lumbus length 𝐿 are considered as the two independent variables, and circular arc radius 𝑅 is found from the flattening length equation. 
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.1. Finite element model 

The finite element model is constructed utilizing the commercial

oftware Abaqus 2020 with python scripts allows for automated para-

etric studies. Four-node general-purpose shell elements with reduced

ntegration (Abaqus element type S4R) were used and the accuracy of

he mesh was ascertained through a mesh refinement study, resulting in

 relative mesh density of around 50 elements along the cross-section

rofile. 

The nodes forming the two end cross-sections are kinematically cou-

led to two reference points, in effect creating rigid cross-sections that

atch the end conditions of the experimental setup [43] . All six degrees

f freedom of the reference point at end 1 are constrained, defining a

lamped condition. At the other end, a pure moment load is applied to

he reference point 2. The location of the two reference points is shown

n Fig. 1 (a). In the case of a moment applied about 𝑥 − axis 𝑀 𝑋 , the

ranslational degrees of freedom along 𝑌 and 𝑍 as well as the rotational

egree of freedom around 𝑋 are left free, while the other three degrees

f freedom are all fixed, i.e., 𝑢 1 = 0, 𝑢 2 = FREE, 𝑢 3 = FREE, 𝑢𝑟 1 = FREE,

𝑟 2 = 0, 𝑢𝑟 3 = 0. In the case of a moment applied about 𝑦 − axis 𝑀 𝑌 , the

ame boundary conditions are used with 𝑋 and 𝑌 inverted. 

In accordance with previously reported data for TRAC

ooms [43,44] , each CTLT omega shell consists of four layers of

nidirectional carbon fibers in an epoxy resin and the layers are

rranged in the stacking sequence [0 ◦, 90 ◦] 𝑆 . The nominal orthotropic

lastic material properties of each layer are set as 𝐸 1 = 128 . 0 GPa,

 2 = 6 . 5 GPa, 𝜈12 = 0 . 35 , 𝐺 12 = 𝐺 13 = 𝐺 23 = 7 . 5 GPa. In addition, a

omposite shell section is defined to specify the material properties,

hickness, and orientation angle of each layer. 

.2. Instability analysis 

In a nonlinear finite element formulation, the response of a structure

s calculated by iteratively solving the equation [52–54] : 

 𝑇 𝛿𝑢 = 𝑅 (1)

here 𝐾 𝑇 is the current tangent stiffness matrix where the loads are

pplied, 𝛿𝑢 is the incremental displacement vector, and 𝑅 is the force

esidual for the iteration. For large deflection problems, the tangent stiff-

ess matrix 𝐾 𝑇 consists of the sum of the initial stiffness matrix 𝐾 0 , the

isplacement stiffness matrix 𝐾 𝐿 , and the stress stiffness matrix 𝐾 𝜎 as

escribed by: 

 𝑇 = 𝐾 0 + 𝐾 𝐿 + 𝐾 𝜎 (2)

he structure is stable only if the tangent stiffness matrix 𝐾 𝑇 is positive

efinite; in other words, the structure becomes unstable and buckling is
3 
ikely to occur when the tangent stiffness 𝐾 𝑇 is singular. Therefore, the

nset of buckling can be predicted by looking for the loads for which

he model tangent stiffness matrix becomes singular, and so that the

roblem 

 𝑇 𝛿𝑢 = 0 (3)

as non-trivial incremental displacement vector 𝛿𝑢 solutions. 

.2.1. Linear buckling analysis 

In the linear buckling analysis, the pre-buckling displacement is as-

umed to be small thus the displacement stiffness matrix 𝐾 𝐿 = 0 , and

he tangent stiffness matrix is approximated using only the initial stiff-

ess matrix 𝐾 0 and the stress stiffness matrix 𝐾 𝜎 . By assuming the stress

tiffness matrix to be linearly proportional to an incremental load 𝑄 ,

q. 3 is reduced to an eigenvalue problem: 

 𝐾 0 + 𝜆𝑖 𝐾 𝜎) 𝜙𝑖 = 0 (4)

here 𝐾 0 is the initial global stiffness matrix defined at the undeformed

onfiguration, 𝐾 𝜎 is the initial stress stiffness matrix caused by the incre-

ental load 𝑄 , 𝜆𝑖 are the eigenvalues, i.e., critical buckling load factors,

nd 𝜙𝑖 are the eigenvectors, i.e., buckling modes. The eigenvalues and

igenvectors are ordered increasingly in magnitude, such that 𝜆1 𝑄 is the

owest linear critical buckling load and 𝜙1 is the corresponding linear

uckling mode. This eigenvalue problem is readily solved using Lanczos

ethod by an eigenvalue buckling analysis step ( ∗ Buckle) in Abaqus. 

.2.2. Nonlinear buckling analysis 

In the nonlinear buckling analysis, the effect of the change in con-

guration in the pre-buckling stage is considered and the full tangent

tiffness matrix from Eq. 2 must be utilized [55] . The nonlinear buck-

ing analysis generally consists of two analysis steps: ( i ) a nonlinear

tatic analysis step ( ∗ Static) and ( ii ) an eigenvalue buckling analysis

tep ( ∗ Buckle). In the first step, a preload ( ”dead ” load), 𝑃 , is applied

o the structure to attain a deformed state, during which the large-

isplacement formulation is used (NLGEOM = ON) to capture the geo-

etric nonlinearity. Then the deformed state of the model at the end

f the first step is identified as the base state for the second eigenvalue

uckling step. Namely, the nonlinear critical loads and buckling modes

re calculated by applying a seperate incremental load 𝑄 to the de-

ormed state of the structure with change of configurations and attained

tress-field incorporated. The eigenvalue problem is a bit complicated

s follows: 

 𝐾 0 + 𝐾 𝐿 + 𝜆𝑖 𝐾 𝜎) 𝜙𝑖 = 0 (5)

here 𝐾 0 is the initial global stiffness matrix defined at the undeformed

onfiguration, 𝐾 is the global displacement stiffness matrix determined
𝐿 
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s  
t the deformed state by applying the preload 𝑃 , and 𝐾 𝜎 is the initial

tress stiffness matrix caused by the incremental load 𝑄 . 

While large deformation is included in the static analysis, the eigen-

alue buckling theory relies on there being little geometric change

ue to the ”live ” buckling load, 𝜆𝑖 𝑄 . Then the final nonlinear critical

oads predicted by the two-step nonlinear buckling analysis are given

y 𝑃 + 𝜆𝑖 𝑄 and 𝜙𝑖 denote the corresponding nonlinear buckling modes.

otice that the amount of preload would also have an effect on the non-

inear buckling predictions of structures. To capture the nonlinear buck-

ing behavior of the thin-walled composite structures which are known

or their high sensitivity to geometric imperfections and having many

uckling modes with closely spaced eigenvalues, it often helps to ap-

ly enough preload to deform the structure to just below the buckling

oad prior to performing the eigenvalue extraction [56] . On the other

and, the structure should not be preloaded above the buckling load;

therwise the adopted Lanczos algorithm in Abaqus will issue an error

essage and terminate the analysis. 

In the nonlinear buckling analysis, with the aim of finding the appro-

riate preload which should be as large as possible while allowing the

xtraction of eigenvalues, the following tricks could be helpful: ( i ) ap-

lying a relatively large preload (greater than nonlinear buckling load)

n the nonlinear static analysis step, and thus this step is expected to

e conducted up to the predetermined load or fail to converge due to

uckling; and ( ii ) performing an eigenvalue analysis in the deformed

tate starting from the gradually decreasing last available increment un-

il the eigenvalues can be properly extracted. The above procedure, il-

ustrated as pseudocode in Algorithm 1 , is implemented into a Python

lgorithm 1 Pseudocode for the nonlinear buckling analysis. 

Step 1. Run a nonlinear static analysis with a preload being applied

and write the model definition and deformed state at every increment

to the files required for restart. 

Step 2. Perform an eigenvalue analysis from the last available incre-

ment until the eigenvalues can be successfully extracted. 

while True: do 

Perform the eigenvalue analysis 

if Eigenvalue analysis completes successfully then 

break 

end if

n = n - 1 (n is the maximum number of available increments ob-

tained in Step 1) 

end while 

cript in Abaqus to run the simulations automatically. In real practice,

he preload in the nonlinear static analysis is set equal to the linear crit-

cal buckling load obtained by conducting a linear buckling analysis,

ecause the linear buckling analysis never underestimates the critical

oad of the CTLT as will be demonstrated in the following sections. 

.3. Post-buckling analysis 

The nonlinear post-buckling response of the CTLT is investigated by

ntroducing an imperfection in the form of the two most critical buck-

ing modes, 𝑣 𝑀 

1 and 𝑣 𝑀 

2 , obtained from the nonlinear buckling analysis.

herefore, the mesh is perturbed by 𝑣 𝑀 

1 and 𝑣 𝑀 

2 scaled by a factor 𝜂,

uch that 

𝑣 𝑀 = 𝜂( 𝑣 𝑀 

1 + 𝑣 𝑀 

2 ) (6)

here 𝜂 is chosen as 5% of thickness of the CTLT, i.e., 𝜂 = 0 . 05 𝑡 . 

. Results and discussions 

In this study numerical simulations are performed to explore the non-

inear buckling behavior space of CTLTs characterized by different cross-

ection geometries. First, the linear and nonlinear buckling and post-

uckling behavior of a particular CTLT is investigated (see Section 4.1 ).
4 
hen, the behavior space of circular CTLTs is explored, highlighting the

ffect of the size of web and lumbus on the pre-buckling stiffness and

onlinear critical buckling load of conventional CTLTs (see Section 4.2 ).

ext, the concept of parabolic CTLTs is introduced and the design space

f which is also probed, demonstrating a wider tunability range of the

echanical response (see Section 4.3 ). Finally, the bending resistance

erformance of both circular and parabolic CTLTs is compared to that

f TRAC booms with equal weight, and a discussion is presented (see

ection 4.4 ). 

.1. Nonlinear buckling behavior of a particular circular CTLT 

A beam develops compressive stresses on its inner surface when it is

ubjected to a pure bending moment. For the CTLTs, the bending mo-

ent about 𝑥 − axis produces in-plane compressive stresses on the in-

er lumbus, while the bending moment about 𝑦 − axis produces in-plane

ompressive stresses on the inner web. The compressive stress is the

riving force for most buckling phenomena. Moreover, the lumbus and

eb, as being parts of the CTLT, are thin-walled structures and have

 low bending stiffness. Therefore, the in-plane compressive stress may

ead to out-of-plane buckling within the lumbus or web when the critical

alue is reached. 

To demonstrate the typical response characteristics of the CTLTs un-

er pure bending, without loss of generality, in Fig. 2 we present the

nalysis results of a particular CTLT characterized by 𝑤 = 5 . 5 mm and

 = 3 . 5 mm. Fig. 2 a and 2 b show the mechanical response of the CTLT

hen the bending moment is applied about 𝑥 − axis. We start by deter-

ining the critical loads for buckling of this CTLT, only the lowest criti-

al load is of interest here. The critical load is determined from different

erspectives. First, we estimate the critical load by solving the eigen-

alue problem through performing a liner buckling analysis or a nonlin-

ar buckling analysis as discussed previously. The results are presented

y two dashed lines perpendicular to the moment axis. In Fig. 2 a the

ed dashed line indicates the critical load obtained from the linear buck-

ing analysis, which we refer to as linear critical load (LCL) , and the blue

ashed line indicates that obtained from the nonlinear buckling analysis,

hich we refer to as nonlinear critical load (NLCL) . Moreover, the crit-

cal buckling load can also be identified from the moment-angle curve

y performing a post-buckling analysis. For the post-buckling analysis,

he imperfections afore-mentioned should be introduced. It can be seen

rom Fig. 2 a that there exist two distinct regimes in the moment-angle

urve (as shown in blue solid line), i.e., a pre-buckling regime and a post-

uckling regime. The transition point on the moment-angle curve from

re-buckling regime to post-buckling regime can be identified as the crit-

cal load for buckling. From these results shown in Fig. 2 a, we conclude

hat ( i ) linear buckling analysis would overestimate the overall stability

f the structure in this case, i.e., 𝐿𝐶 𝑇 > 𝑁𝐿𝐶 𝑇 , and ( ii ) the nonlin-

ar critical load ( 𝑁𝐿𝐶𝐿 ) estimated by the nonlinear buckling analysis

grees very well with that identified from the post-buckling response.

urthermore, the difference of linear and nonlinear buckling analysis is

lso manifested in terms of buckling modes. As shown in Fig. 2 b, linear

uckling analysis predicts a larger number of winkles within the lumbus

han nonlinear buckling analysis in this case. It should be pointed out

he difference between linear and nonlinear buckling highlighted herein

s firstly pointed out by Leclerc et al. [45] in the analysis of TRAC boom.

he difference is elucidated once again for CTLT bent about 𝑥 − axis. 

In sharp contrast, a different buckling behavior is observed when

he pure bending moment is loaded about 𝑦 − axis. It can be seen in

ig. 2 c that for this case the critical loads predicted by linear and non-

inear buckling analysis are basically the same, i.e., 𝐿𝐶𝐿 = 𝑁𝐿𝐶𝐿 , and

oth are in good agreement with that identified from the post-buckling

oment-angle curve. This difference is attributed to the different bound-

ry conditions of the web and lumbus in compression. More specifically,

hen the bending moment is applied about 𝑥 − axis the lumbus under-

oing compressive stresses is constrained on both sides by surrounding

tructures; when the bending moment is applied about 𝑦 − axis, only one
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Fig. 2. Nonlinear buckling and post-buckling response of a particular CTLT characterized by 𝑤 = 5 . 5 mm and 𝐿 = 3 . 5 mm when subjected to a pure bending moment 

about (a-b) 𝑥 − axis and (c-d) 𝑦 − axis. 
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ide of the web in compression is constrained while the inner edge re-

ains free, which reduces the sensitivity of buckling load to geomet-

ic nonlinearity. On the other hand, the post-buckling response under

he two loading conditions exhibits similar features, as they both con-

ain two distinct stages divided by 𝑁𝐿𝐶𝐿 , namely, a pre-buckling stage

tarting from initiation to 𝑁𝐿𝐶𝐿 , and a post-buckling stage starting

rom 𝑁𝐿𝐶𝐿 and ending with buckling collapse. We also show, in Fig. 2 a

nd 2 c, that the pre-buckling regime predicted by the post-buckling

nalysis is observed coincided with the curve obtained by performing a

onlinear static analysis without introducing any imperfections, which

xhibits approximately a linear behavior. Then the pre-buckling stiffness

f CTLTs can be calculated as 

 = 

𝑑𝑀 

𝑑𝜃
(7)

here the derivative can be directly obtained through linear regression

f the data in pre-buckling regime. 

.2. Construction of design space for circular CTLTs 

Having identified typical mechanical behavior of CTLTs under pure

ending, we then move on to construct the design space, aiming to probe

he evolution of pre-buckling stiffness 𝐾 and nonlinear critical buckling

oad 𝑁𝐿𝐶𝐿 . The design space is constructed by varying the two inde-

endent cross-section geometric parameters, which are the web width 𝑤

1

5 
nd lumbus length 𝐿 as shown in Fig. 3 a. More specifically, 𝑤 is varied

rom 1 to 10 mm and 𝐿 is varied from 0 to 7 mm, and a number of diverse

ross-section shapes are determined as shown in Fig. 3 b. Note that 𝐿 = 0
ndicates a CTLT design without lumbus. Fig. 3 c and 3 d present the

volution of the pre-buckling stiffness 𝐾 𝑥 and the nonlinear critical load

 𝑁𝐿𝐶𝐿 ) 𝑥 about 𝑥 − axis as a function of the web width 𝑤 and the lumbus

ength 𝐿 . It is shown that the pre-buckling stiffness 𝐾 𝑥 strongly depends

n the web width 𝑤 but slightly on the lumbus length 𝐿 , while the non-

inear critical load ( 𝑁𝐿𝐶𝐿 ) 𝑥 depends both highly on the web width 𝑤

nd the lumbus length 𝐿 . Specifically, 𝐾 𝑥 increases as 𝑤 decreases but

ends to remain unchanged as 𝐿 varies, while ( 𝑁𝐿𝐶𝐿 ) 𝑥 increases as 𝑤

nd/or 𝐿 decreases. Furthermore, the evolution of the pre-buckling stiff-

ess 𝐾 𝑦 and nonlinear critical load ( 𝑁𝐿𝐶𝐿 ) 𝑦 about 𝑦 − axis is presented

n Fig. 3 e and 3 f. It is shown that the pre-buckling stiffness 𝐾 𝑦 depends

oth highly on the web width 𝑤 and the lumbus length 𝐿 , while the

onlinear critical load ( 𝑁𝐿𝐶𝐿 ) 𝑦 depends solely on the web width 𝑤 .

pecifically, 𝐾 𝑦 increases with the increase of 𝑤 or 𝐿 , while ( 𝑁𝐿𝐶𝐿 ) 𝑦 
ncreases with the decrease of 𝑤 . In conclusion, there exists a common

egion of the design space that maximize the pre-buckling stiffness about

 − axis and nonlinear critical buckling load about both 𝑥 and 𝑦 − axes at

mall web width, although a decrease in the pre-buckling stiffness about

 − axis is expected. Given the fact that the minimum pre-buckling stiff-

ess about 𝑦 − axis ( ∼20 Nm/rad) is yet much greater than the maximum

re-buckling stiffness about 𝑥 − axis ( ∼6 Nm/rad), the smallest value of

 mm is determined to be the optimal size for the web. 
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Fig. 3. The design space for nonlinear buckling of CTLTs with circular arcs. (a) Schematic illustration of the cross-section geometry of the circular CTLT. (b) A variety 

of cross-section shapes of circular CTLTs characterized by web width 𝑤 ∈ [1 , 10] mm and lumbus length 𝐿 ∈ [0 , 7] mm. Heat map illustrating the (c) pre-buckling 

stiffness 𝐾 𝑥 and (d) nonlinear critical load ( 𝑁𝐿𝐶𝐿 ) 𝑥 as a function of the web width 𝑤 and lumbus length 𝐿 when the moment is applied about 𝑥 − axis. Heat map 

illustrating the (e) pre-buckling stiffness 𝐾 𝑦 (f) and nonlinear critical load ( 𝑁𝐿𝐶𝐿 ) 𝑦 as a function of the web width 𝑤 and lumbus length 𝐿 when the moment is 

applied about 𝑦 − axis. 
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Next, we take a closer look at the effect of the lumbus length 𝐿 on

he nonlinear buckling behavior of CTLTs by considering a group of

amples with 𝑤 fixed to be 1 mm and 𝐿 varies from 0 to 7 mm. Fig. 4 a

escribes a trade-off between the bending resistance performance about

 − axis and that about 𝑦 − axis. Specifically, an increase in the lumbus

ength 𝐿 leads to a better bending resistance performance about 𝑥 − axis

ut in the meantime leads to a worse bending resistance performance

bout 𝑦 − axis. The effect of the lumbus length is also reflected in terms of

he nonlinear buckling modes as shown in Fig. 4 b. Firstly, for the cases

he bending is applied about 𝑥 − axis, two distinct nonlinear buckling
6 
atterns were observed according to whether the CTLT has lumbus or

ot. For the CTLT without lumbus, i.e., 𝐿 = 0 , the buckling mode is a

iamond wave pattern, as often found in the buckling of thin-walled

ylindrical shells [57–59] . In contrast, for the CTLT with lumbus, i.e.,

 > 0 , the buckling mode is recognized as ”wrinkles ” in the lumbus, and

he number of the wrinkles increases as the lumbus length 𝐿 increases

rom 1 to 7 mm. Secondly, for the cases bending is applied about 𝑦 − axis,

he buckling mode is a wave pattern occurs in the compressed web,

nd the number of waves also increases as the lumbus length increases

rom 0 to 7 mm. Finally, considering the trade-off between the bending
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Fig. 4. Effect of the lumbus length 𝐿 on (a) the post-buckling response and (b) nonlinear buckling modes of CTLTs with 𝑤 = 1 mm when subjected to a pure bending 

moment about 𝑥 − axis (left) and 𝑦 − axis (right). 
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esistance performance about 𝑥 − and 𝑦 − axes, a value of 3 mm, which

s in the middle of the range for the lumbus length 𝐿 , is selected as the

ptimal one. Note that for the particular cross-sectional shape of CTLT

f interest here, the lumbus length has profound effect on the parameter

election and sectional shape design. This effect, however, is omitted in

urrent literature, and it is elucidated for the first time with the aid of

onstructed design space diagram. 

.3. Design space for parabolic CTLTs 

So far, we have explored the nonlinear buckling behavior space of

onventional CTLTs with circular arcs, and reported the effect of web

nd lumbus sizes on the bending performance of circular CTLTs. How-

ver, the constant curvature in circular arcs may limit the potential use

f conventional CTLTs. A new design of CTLT with variable curvature

rcs is achieved by replacing the circular arcs with parabolic arcs, which

s referred to as the parabolic CTLT [47] . The cross-section geometry of

he parabolic CTLT is illustrated in Fig. 5 a. In this section, we follow our
7 
reviously developed numerical strategy for parameterizing sectional

hape and generating design space for circular CTLTs and extend them

o parabolic CTLTs. As shown in Fig. 5 a, each parabolic arc segment is

efined by a parabola function: 

 = 𝑎𝑥 2 0 ≤ 𝑥 ≤ 𝑥 0 (8)

here 𝑎 is the coefficient of the parabola. The arc length of a single

arabolic segment, 𝐿 𝑃 , is calculated using the following formula: 

 𝑃 = ∫
𝑥 0 

0 

√
(1 + 4 𝑎 2 𝑥 2 ) 𝑑𝑥 (9)

nd then the total flattening length of the cross-section of the parabolic

TLT is expressed as 𝑠 = 2 𝑤 + 𝐿 + 4 𝐿 𝑃 . Recall that 𝑠 is set to 27.43 mm

s the same as its circular counterpart, and in this case the web width 𝑤

s fixed to 1 mm. The parabolic CTLT thus has two parameters that can

e varied independently, i.e., the lumbus length 𝐿 and the coefficient

f parabola function 𝑎 . Fig. 5 b presents various cross-section geometries

btained by varying the lumbus length 𝐿 from 0 to 7 mm and varying
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Fig. 5. The design space for nonlinear buckling of parabolic CTLTs. (a) Schematic illustration of the cross-section geometry of the parabolic CTLT. (b) A variety of 

cross-section shapes of parabolic CTLTs characterized by the parabolic coefficient 𝑎 ∈ [10 −2 , 10 0 ] and the lumbus length 𝐿 ∈ [0 , 7] mm. Heat map illustrating the (c) 

pre-buckling stiffness 𝐾 𝑥 and (d) nonlinear critical load ( 𝑁𝐿𝐶𝐿 ) 𝑥 as a function of the parabolic coefficient 𝑎 and the lumbus length 𝐿 when the moment is applied 

about 𝑥 − axis. Heat map illustrating the (e) pre-buckling stiffness 𝐾 𝑦 and (f) nonlinear critical load ( 𝑁𝐿𝐶𝐿 ) 𝑦 as a function of the parabolic coefficient 𝑎 and the 

lumbus length 𝐿 when the moment is applied about 𝑦 − axis. 
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he coefficient 𝑎 from 10 −2 to 10 0 . The coefficient 𝑎 determines how wide

r narrow the parabola is; the greater the coefficient 𝑎 , the narrower the

arabola. Therefore, as shown in Fig. 5 b, the cross-section becomes nar-

ower in 𝑥 − axis and wider in 𝑦 − axis as the coefficient 𝑎 increases for

 given value of lumbus length 𝐿 . In theory, this will cause a decrease

n the stiffness about 𝑥 − axis and in the meantime an increase in the

tiffness about 𝑦 − axis [47,48] . Heat maps in Fig. 5 c and 5 d present the

ffect of the coefficient 𝑎 and the lumbus length 𝐿 on the bending per-

ormance of parabolic CTLTs about 𝑥 − axis. The pre-buckling stiffness

 𝑥 and the nonlinear critical load ( 𝑁𝐿𝐶𝐿 ) 𝑥 both depend significantly

n the coefficient 𝑎 and the lumbus length 𝐿 . Specifically, a greater co-
8 
fficient 𝑎 and/or a smaller lumbus length 𝐿 leads to an increase in both

he pre-buckling stiffness 𝐾 𝑥 and the nonlinear critical load ( 𝑁𝐿𝐶𝐿 ) 𝑥 .
ig. 5 e shows the evolution of the pre-buckling stiffness about 𝑦 − axis

 𝑦 as a function of the parabolic coefficient 𝑎 and the lumbus length 𝐿 .

n contrast with the performance about 𝑥 − axis, a greater coefficient 𝑎

nd/or a smaller lumbus length 𝐿 leads to a decrease in the pre-buckling

tiffness about 𝑦 − axis 𝐾 𝑦 . In addition, as shown in Fig. 5 f the parabolic

oefficient 𝑎 has greater effect on the nonlinear critical load ( 𝑁𝐿𝐶𝐿 ) 𝑦 
han the lumbus length 𝐿 , and indicatively, as 𝑎 increases from 10 −2 
o 10 0 , ( 𝑁𝐿𝐶𝐿 ) 𝑦 increases first, reaches a peak at 𝑎 ≃ 10 −1 , and then

ecreases. 
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Fig. 6. Effect of the parabolic coefficient 𝑎 on the post-buckling response of parabolic CTLTs characterized by 𝐿 = 3 mm when subjected to a pure bending moment 

about (a) 𝑥 − axis and (b) 𝑦 − axis. 

Fig. 7. Comparison of bending resistance performance around (a) 𝑥 − axis and (b) 𝑦 − axis between the optimal TRAC boom (blue), circular CTLT (black), and parabolic 

CTLT (red). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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Table 1 

Comparison of variation of nonlinear criti- 

cal buckling moment ( 𝑁𝐿𝐶𝐿 ) between TRAC 

booms, circular CTLTs and parabolic CTLTs. 

( 𝑁𝐿𝐶𝐿 ) 𝑥 ( 𝑁𝐿𝐶𝐿 ) 𝑦 

TRAC booms [44] 0 − 0 . 77 Nm 0 − 0 . 31 Nm 

Circular CTLTs 0 − 0 . 6 Nm 0 − 2 . 0 Nm 

Parabolic CTLTs 0 − 0 . 82 Nm 0 − 1 . 5 Nm 
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We also investigated in detail the effect of the parabolic coefficient

 on the post-buckling response of parabolic CTLTs by considering a

roup of samples characterized by 𝐿 = 3 mm and 𝑎 ∈ [10 −2 , 10 0 ] . An pos-

ible compromise is made once again between the bending resistance

erformance about 𝑥 − axis and that about 𝑦 − axis. It can be seen from

ig. 6 that a greater value of parabolic coefficient 𝑎 leads to a better

ending performance about 𝑥 − axis but a worse bending performance

bout 𝑦 − axis. In addition, CTLTs with circular arcs (black dash lines in

ig. 6 ) show a moderate performance in both cases. These results indi-

ate that a further tunability of the bending performance of CTLTs can

e achieved by altering the parabolic coefficient 𝑎 , and it could be useful

n real-world engineering applications when anisotropic stiffness prop-

rty, e.g., a higher stiffness in one direction and a lower stiffness in the

ther direction, is desirable. 

.4. Comparison with TRAC booms 

Having explored the design space of circular and parabolic CTLTs,

n this subsection, we will perform a comparative study on the bending

esistance performance of circular and parabolic CTLTs to that of TRAC

ooms of equal weight. 

With the design space in hand, the variations of bending performance

f both circular and parabolic CTLTs are extracted readily from the heat

aps in Fig. 3 and Fig. 5 . The same physical quantity is taken from the

onlinear buckling of TRAC booms reported very recently in [44] . A

omparison of variation of the nonlinear critical loads between TRAC

ooms, circular CTLTs and parabolic CTLTs is given in Table 1 . In sum-

ary, circular CTLTs has a narrower range of variation ( 𝑁𝐿𝐶𝐿 ) but
𝑥 

9 
 significantly wider range of variation of ( 𝑁𝐿𝐶𝐿 ) 𝑦 than TRAC booms

or the case considered herein. By introducing parabolas, the maximum

alue of ( 𝑁𝐿𝐶𝐿 ) 𝑥 of parabolic CTLTs is beyond that of TRAC booms.

he maximum value of ( 𝑁𝐿𝐶𝐿 ) 𝑦 of parabolic CTLTs is slightly lower

han that of circular CTLTs, but still much greater than that of TRAC

ooms. 

In addition, as reported in [44] , in the design space of TRAC booms

here is a common region that maximizes the nonlinear critical buck-

ing load for both loading directions at large flange angles and small

eb height, and this gives rise to an optimal TRAC boom design charac-

erized by a web height of 2 mm and a flange angle of 300 ◦. In Fig. 7 the

oment-angle curves of the optimal TRAC boom were reproduced (blue

ines) and used as the reference to evaluate the performance of CTLTs.

otice that the results of TRAC boom that reproduced by our approach

re in excellent agreement with that reported in [44] , which validate the

ccuracy of the proposed model. A circular CTLT characterized by 𝑤 = 1
m and 𝐿 = 3 mm and a parabolic CTLT characterized by 𝑎 = 10 0 and
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 = 3 mm are chosen as the optimal candidates from the design space for

omparison. As shown in Fig. 7 , the circular CTLT demonstrates a worse

erformance than the others in 𝑥 − axis but better in 𝑦 − axis, while the

arabolic CTLT shows a comparable performance in both 𝑥 and 𝑦 − axes

o the TRAC boom. These results show that the optimal CTLT with tai-

ored parameters derived from the design space demonstrates a compa-

able or even better performance than the TRAC boom in either the two

oading directions. 

. Conclusion 

TRAC booms and CTLTs have been proposed as two promising can-

idates for solutions for deploying various light-weight space structures.

ince the thin-walled tubes or booms are thin in thickness and have long

spect ratio, structural instability arises as one of the biggest concerns

or structural designs. Recent study on nonlinear buckling analysis of

RAC booms reveals that classical linear buckling may biasedly esti-

ate the critical load of TRAC booms under pure bending and necessi-

ates the classification of nonlinear and linear buckling. However, the

ecurrence of this difference needs to be justified in CTLTs. Moreover, a

esign space is desperately needed, with which a thorough exploration

nd tailoring of design parameters is admissible. 

In the present paper, we carried out a comprehensive computational

nvestigation aiming at exploring the design space for nonlinear buck-

ing behavior of CTLTs with both circular and parabolic arcs. Our results

eveal the effect of cross-section geometric parameters such as the size

f web, lumbus, and the parabolic coefficient, on the bending resistance

erformance of CTLTs. More specifically, we found that there is a com-

on region at small web width that maximizes the nonlinear critical

uckling load of CTLTs concurrently about both 𝑥 and 𝑦 − axes under

ure bending, whereas there is a trade-off between the two loading di-

ections in terms of pre-buckling stiffness, namely, an increase in the

eb width and/or a descrease in the parabolic coefficient would result

n a decrease in the pre-buckling stiffness about 𝑥 − axis but an increase

n the pre-buckling stiffness about 𝑦 − axis. More importantly, the con-

rary effects of the lumbus length on bending performance of CTLTs

n two directions are also unveiled. This profound effect of the lum-

us, nevertheless, has been ignored in the literature to our best knowl-

dge [51] . Moreover, we made a quantitative comparison on the bend-

ng performance of TRAC booms and CTLTs under the same weight. The

ptimal circular CTLT demonstrates a better bending resistance perfor-

ance than the optimal TRAC boom in 𝑦 − axis but a worse performance

n 𝑥 − axis, while the optimal parabolic CTLT demonstrates a comparable

r better performance in both loading directions than TRAC boom. 

We believe our efforts provide guidelines for engineers and scien-

ists attempting to design CTLTs with desirable bending resistance per-

ormance. We also note that the nonlinear buckling simulation scheme

roposed in this work is readily extended for analyzing and optimizing

he bending performance of other kinds of thin-walled composite de-

loyable structures [44,60–62] .The paradigm of parameterizing cross-

ection shape and then constructing a design space in an automatic way

an also be developed for optimal design of other thin-walled slender

tructures. 

ata availability 

The Abaqus scripts used for the numerical analyses that support the

ndings of this study are available from the corresponding author upon

easonable request. 

eclaration of Competing Interest 

The authors declare that they have no known competing financial

nterests or personal relationships that could have appeared to influence

he work reported in this paper. 
10 
RediT authorship contribution statement 

Qilong Jia: Conceptualization, Methodology. Ning An: Software,

nvestigation, Data curation, Writing – original draft. Xiaofei Ma: Re-

ources, Supervision. Jinxiong Zhou: Writing – review & editing. 

cknowledgement 

This research is supported by National Natural Science Foundation

f China (grant 11972277). Q. J. also acknowledges the support from

hanghai Rising-Star Program (19QB1404000). 

eferences 

[1] Rennie B.. New closed tubular extendible boom1967;. 

[2] Aguirre M . The collapsible tube mast (ctm). In: Second European Space Mechanisms

and Tribology Symposium, 231; 1985. p. 75–81 . 

[3] Leipold M , Runge H , Sickinger C . Large sar membrane antennas with lightweight

deployable booms. In: 28th ESA Antenna Workshop on Space Antenna Systems and

Technologies, ESA/ESTEC. European Space and Technology Research Centre Noord-

wijk, The Netherlands; 2005. p. 8 . 

[4] Block J , Straubel M , Wiedemann M . Ultralight deployable booms for solar sails and

other large gossamer structures in space. Acta Astronaut 2011;68(7–8):984–92 . 

[5] Hillebrandt M , Meyer S , Zander M , Straubel M , Hühne C . The boom design of the

de-orbit sail satellite. In: European Conference on Spacecraft Structures, Materials

and Mechanical Testing; 2014 . 

[6] Belvin W.K., Straubel M., Wilkie W.K., Zander M., Fernandez J.M., Hillebrandt M..

Advanced deployable structural systems for small satellites2016;. 

[7] Geppert U , Biering B , Lura F , Block J , Straubel M , Reinhard R . The 3-step dlr–esa

gossamer road to solar sailing. Adv Space Res 2011;48(11):1695–701 . 

[8] Seefeldt P , Spietz P , Sproewitz T , Grundmann JT , Hillebrandt M , Hobbie C , et al. Gos-

samer-1: mission concept and technology for a controlled deployment of gossamer

spacecraft. Adv Space Res 2017;59(1):434–56 . 

[9] Fernandez J.M.. Advanced deployable shell-based composite booms for small satel-

lite structural applications including solar sails2017;. 

10] Fernandez JM , Rose G , Stohlman OR , Younger CJ , Dean GD , Warren JE , et al. An ad-

vanced composites-based solar sail system for interplanetary small satellite missions.

In: 2018 AIAA Spacecraft Structures Conference; 2018. p. 1437 . 

11] Firth JA , Pankow MR . Advanced dual-pull mechanism for deployable spacecraft

booms. J Spacecr Rockets 2019;56(2):569–76 . 

12] Firth JA , Pankow MR . Minimal unpowered strain-energy deployment mechanism

for rollable spacecraft booms: ground test. J Spacecr Rockets 2020;57(2):346–53 . 

13] Long Y , Rique Garaizar O , Fernandez JM , Bergan A , Yu W . Multiscale simulation of

deployable composite structures. In: AIAA SciTech 2021 Forum; 2021. p. 0199 . 

14] Stohlman OR , Zander ME , Fernandez JM . Characterization and modeling of large

collapsible tubular mast booms. In: AIAA Scitech 2021 Forum; 2021. p. 0903 . 

15] Angevain J-C , Ihle A , Rodrigues G , Santiago-Prowald J . Large deployable space-

borne reflector antennas in europe: Progress status and perspectives. In: 2019 13th

European Conference on Antennas and Propagation (EuCAP). IEEE; 2019. p. 1–5 . 

16] Yoshiro O., Reveles J., Fraux V., Ashley D.-J.. Deployable wrapped rib assembly.

2019. US Patent App. 16/348,390. 

17] Curiel AdS , Whittaker P , Bird R , Haslehurst A , Nejadi P , Victoria I , et al. Synthetic

aperture radar on a nanosatellite-is it possible?. In: Proceedings of the 12th IAA

Symposium on Small Satellites for Earth Observation. International Academy of As-

tronautics (IAA); 2019 . 

18] Hu Y , Chen W , Gao J , Hu J , Fang G , Peng F . A study of flattening process of deploy-

able composite thin-walled lenticular tubes under compression and tension. Compos

Struct 2017;168:164–77 . 

19] Chen W , Fang G , Hu Y . An experimental and numerical study of flattening and

wrapping process of deployable composite thin-walled lenticular tubes. Thin-Walled

Structures 2017;111:38–47 . 

20] Bai J , Xiong J , Gao J , Yi X . Analytical solutions for predicting in-plane strain and

interlaminar shear stress of ultra-thin-walled lenticular collapsible composite tube

in fold deformation. Compos Struct 2013;97:64–75 . 

21] Bai J , Shenoi R , Xiong J . Thermal analysis of thin-walled deployable composite boom

in simulated space environment. Compos Struct 2017;173:210–18 . 

22] Bai J-B , Chen D , Xiong J-J , Shenoi RA . Folding analysis for thin-walled deployable

composite boom. Acta Astronaut 2019;159:622–36 . 

23] Sickinger C , Herbeck L , Breitbach E . Structural engineering on deployable cfrp

booms for a solar propelled sailcraft. Acta Astronaut 2006;58(4):185–96 . 

24] Bai J , Xiong J . Temperature effect on buckling properties of ultra-thin-walled lentic-

ular collapsible composite tube subjected to axial compression. Chin J Aeronaut

2014;27(5):1312–17 . 

25] Hu Y , Chen W , Li R , Fang G . Mechanical characteristics of deployable composite

thin-walled lenticular tubes. Compos Struct 2016;153:601–13 . 

26] Shirkavand A , Taheri-Behrooz F , Omidi M . Orientation and size effect of a rectangle

cutout on the buckling of composite cylinders. Aerosp Sci Technol 2019;87:488–97 .

27] Devarajan B , Kapania RK . Thermal buckling of curvilinearly stiffened lami-

nated composite plates with cutouts using isogeometric analysis. Compos Struct

2020;238:111881 . 

28] Brendel B , Ramm E . Linear and nonlinear stability analysis of cylindrical shells.

Computers & structures 1980;12(4):549–58 . 

http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0002
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0002
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0003
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0003
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0003
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0003
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0004
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0004
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0004
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0004
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0005
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0005
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0005
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0005
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0005
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0005
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0007
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0007
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0007
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0007
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0007
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0007
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0007
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0008
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0008
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0008
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0008
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0008
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0008
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0008
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0008
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0010
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0010
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0010
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0010
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0010
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0010
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0010
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0010
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0011
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0011
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0011
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0012
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0012
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0012
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0013
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0013
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0013
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0013
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0013
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0013
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0014
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0014
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0014
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0014
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0015
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0015
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0015
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0015
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0015
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0017
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0017
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0017
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0017
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0017
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0017
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0017
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0017
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0018
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0018
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0018
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0018
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0018
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0018
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0018
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0019
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0019
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0019
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0019
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0020
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0020
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0020
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0020
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0020
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0021
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0021
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0021
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0021
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0022
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0022
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0022
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0022
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0022
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0023
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0023
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0023
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0023
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0024
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0024
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0024
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0025
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0025
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0025
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0025
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0025
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0026
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0026
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0026
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0026
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0027
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0027
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0027
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0028
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0028
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0028


Q. Jia, N. An, X. Ma et al. International Journal of Mechanical Sciences 207 (2021) 106661 

[  

[  

[  

[  

[  

[  

[  

 

[  

 

[  

[  

 

[  

[

[  

[  

[  

 

[  

 

[  

[  

[  

[  

[  

 

[  

 

[  

[  

[  

[  

[  

 

[  

[  

 

[  

[  

 

[  

 

[  

 

[  

 

29] Kounadis AN . An efficient simplified approach for the nonlinear buckling analysisof

frames. AIAA journal 1985;23(8):1254–9 . 

30] Wu C , Arora J . Design sensitivity analysis and optimization of nonlinear structural-

response using incremental procedure. AIAA journal 1987;25(8):1118–25 . 

31] Wu C , Arora J . Design sensitivity analysis of non-linear buckling load. Comput Mech

1988;3(2):129–40 . 

32] Lindgaard E , Lund E . Nonlinear buckling optimization of composite structures. Com-

put Methods Appl Mech Eng 2010;199(37–40):2319–30 . 

33] Lindgaard E , Lund E . Optimization formulations for the maximum nonlinear buck-

ling load of composite structures. Struct Multidiscip Optim 2011;43(5):631–46 . 

34] Lindgaard E , Lund E . A unified approach to nonlinear buckling optimization of com-

posite structures. Computers & Structures 2011;89(3–4):357–70 . 

35] Lindgaard E , Lund E , Rasmussen K . Nonlinear buckling optimization of com-

posite structures considering ǣworst ǥ shape imperfections. Int J Solids Struct

2010;47(22–23):3186–202 . 

36] Nguyen T-T , Ronel S , Massenzio M , Jacquelin E , Apedo KL , Phan-Dinh H . Numer-

ical buckling analysis of an inflatable beam made of orthotropic technical textiles.

Thin-Walled Structures 2013;72:61–75 . 

37] Liang K , Sun Q , Zhang Y . Nonlinear buckling analysis of variable stiffness composite

plates based on the reduced order model. Compos Struct 2018;206:681–92 . 

38] Liang K , Hao P , Wang B , Sun Q . A novel reduced-order modeling method for non-

linear buckling analysis and optimization of geometrically imperfect cylinders. Int

J Numer Methods Eng 2021;122(6):1456–75 . 

39] Spencer DA , Johnson L , Long AC . Solar sailing technology challenges. Aerosp Sci

Technol 2019;93:105276 . 

40] Firth J.A., et al. Deployment mechanisms for rollable spacecraft booms.2019;. 

41] Sullivan G , Blandino JR , Hayes T . Boom deployment mechanism for cubesats. In:

AIAA Scitech 2020 Forum; 2020. p. 1672 . 

42] Murphey TW , Turse D , Adams L . Trac boom structural mechanics. In: 4th AIAA

Spacecraft Structures Conference; 2017. p. 0171 . 

43] Leclerc C , Wilson LL , Bessa MA , Pellegrino S . Characterization of ultra-thin com-

posite triangular rollable and collapsible booms. In: 4th AIAA Spacecraft Structures

Conference; 2017. p. 0172 . 

44] Bessa M , Pellegrino S . Design of ultra-thin shell structures in the stochastic

post-buckling range using bayesian machine learning and optimization. Int J Solids

Struct 2018;139:174–88 . 

45] Leclerc C , Pellegrino S . Nonlinear elastic buckling of ultra-thin coilable booms. Int

J Solids Struct 2020;203:46–56 . 

46] Cox K , Medina KA . Scalability of triangular rollable and collapsible booms. In: AIAA

Scitech 2019 Forum; 2019. p. 2026 . 
11 
47] Lee A , Fernandez JM . Mechanics of bistable two-shelled composite booms. In: 2018

AIAA Spacecraft Structures Conference; 2018. p. 0938 . 

48] Lee AJ , Fernandez JM . Inducing bistability in collapsible tubular mast booms with

thin-ply composite shells. Compos Struct 2019;225:111166 . 

49] Salazar JE , Fernandez JM . Experimental characterization of the dimensional stabil-

ity of deployable composite booms during stowage. In: AIAA SciTech 2021 Forum;

2021. p. 0195 . 

50] Wilkie W.K., Fernandez J.M., Stohlman O.R., Schneider N.R., Dean G.D., Kang J.H.,

et al. An overview of the nasa advanced composite solar sail (acs3) technology

demonstration project. 

51] Royer F , Pellegrino S . Ultralight ladder-type coilable space structures. In: 2018 AIAA

Spacecraft Structures Conference; 2018. p. 1200 . 

52] Bathe K-J , Dvorkin EN . On the automatic solution of nonlinear finite element equa-

tions. Computers & Structures 1983;17(5–6):871–9 . 

53] Wriggers P . Nonlinear finite element methods. Springer Science & Business Media;

2008 . 

54] Kim N-H . Introduction to nonlinear finite element analysis. Springer Science & Busi-

ness Media; 2014 . 

55] Pedersen NL , Pedersen P . Buckling load optimization for 2d continuum models,

with alternative formulation for buckling load estimation. Struct Multidiscip Optim

2018;58(5):2163–72 . 

56] Zheng L . Wrinkling of dielectric elastomer membranes. California Institute of Tech-

nology; 2009 . 

57] Fajuyitan OK , Sadowski AJ , Wadee MA , Rotter JM . Nonlinear behaviour of

short elastic cylindrical shells under global bending. Thin-Walled Structures

2018;124:574–87 . 

58] Yadav KK , Gerasimidis S . Instability of thin steel cylindrical shells under bending.

Thin-Walled Structures 2019;137:151–66 . 

59] Lee T-U , Yang X , Ma J , Chen Y , Gattas JM . Elastic buckling shape control of

thin-walled cylinder using pre-embedded curved-crease origami patterns. Int J Mech

Sci 2019;151:322–30 . 

60] Yang H , Liu L , Guo H , Lu F , Liu Y . Wrapping dynamic analysis and optimization of

deployable composite triangular rollable and collapsible booms. Struct Multidiscip

Optim 2019;59(4):1371–83 . 

61] Yang H , Guo H , Wang Y , Feng J , Tian D . Analytical solution of the peak bend-

ing moment of an m boom for membrane deployable structures. Int J Solids Struct

2020;206:236–46 . 

62] Yang H , Guo H , Liu R , Wang S , Liu Y . Coiling and deploying dynamic optimization of

a c-cross section thin-walled composite deployable boom. Struct Multidiscip Optim

2019:1–8 . 

http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0029
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0029
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0030
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0030
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0030
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0031
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0031
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0031
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0032
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0032
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0032
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0033
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0033
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0033
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0034
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0034
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0034
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0035
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0035
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0035
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0035
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0036
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0036
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0036
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0036
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0036
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0036
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0036
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0037
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0037
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0037
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0037
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0038
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0038
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0038
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0038
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0038
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0039
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0039
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0039
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0039
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0041
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0041
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0041
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0041
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0042
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0042
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0042
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0042
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0043
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0043
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0043
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0043
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0043
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0044
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0044
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0044
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0045
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0045
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0045
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0046
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0046
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0046
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0047
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0047
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0047
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0048
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0048
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0048
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0049
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0049
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0049
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0051
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0051
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0051
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0052
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0052
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0052
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0053
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0053
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0054
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0054
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0055
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0055
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0055
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0056
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0056
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0057
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0057
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0057
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0057
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0057
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0058
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0058
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0058
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0059
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0059
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0059
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0059
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0059
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0059
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0060
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0060
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0060
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0060
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0060
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0060
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0061
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0061
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0061
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0061
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0061
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0061
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0062
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0062
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0062
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0062
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0062
http://refhub.elsevier.com/S0020-7403(21)00395-7/sbref0062

	Exploring the design space for nonlinear buckling of composite thin-walled lenticular tubes under pure bending
	1 Introduction
	2 CTLT Geometry
	3 Finite element analyses
	3.1 Finite element model
	3.2 Instability analysis
	3.2.1 Linear buckling analysis
	3.2.2 Nonlinear buckling analysis

	3.3 Post-buckling analysis

	4 Results and discussions
	4.1 Nonlinear buckling behavior of a particular circular CTLT
	4.2 Construction of design space for circular CTLTs
	4.3 Design space for parabolic CTLTs
	4.4 Comparison with TRAC booms

	5 Conclusion
	Data availability
	Declaration of Competing Interest
	CRediT authorship contribution statement
	Acknowledgement
	References


